
Department of Computer Science
AG Algorithms and Complexity

Issue Date: 08.05.2013
Version: 2013-05-23 18:18

4th Exercise sheet for
Advanced Algorithmics, SS 13

Hand In: Until Wednesday, 15.05.2013, 12:00am, Exercise sessions, hand-in box in
stairwell 48-6 or email.

Problem 6

Solve the following inhomogenous linear recurrence equations using generating func-
tions:

a) a0 = 4,

ai+1 = 2ai + 3i , i ≥ 0 .

b) b0 = 2,

b1 = 2,

bi = 6 · bi−1 − 8 · bi−2 + 13 · i , i ≥ 2 .

Problem 7

Consider the following problem:

Input: A graph G = (V, E) and k ∈ N.

Question: Can we transform G, by deleting or adding at most k edges, into a
graph that consists of a disjoint union of disconnected cliques?

Turn page!



4th Exercise sheet Advanced Algorithmics

a) Consider the following algorithm for the problem:

Given G = (V, E) and k ∈ N, do the following:

1) If G is already a union of disjoint cliques, we are done: report “yes”
and return.

2) Otherwise, if k ≤ 0 we can not find a solution in this branch. Report
“no” and return.

3) Otherwise, identify u, v, w ∈ V with {u, v} ∈ E and {u, w} ∈ E,
but {v, w} /∈ E. Call the algorithm on three instances ((V, E′), k′)
defined by

(B1) E′ = E \ {{u, v}} and k′ = k − 1,

(B2) E′ = E \ {{u, w}} and k′ = k − 1 and

(B3) E′ = E ∪ {{v, w}} and k′ = k − 1,

respectively. Report “yes” if at least one of the recursive calls reports
such, and “no” otherwise.

Show that this algorithm solves the given problem and give a non-trivial upper
bound on its runtime as O-class.

b) In order to improve the algorithm given in a), we can distinguish three cases that
can occur for any chosen “conflict triple” (u, v, w) as specified in step 3:

(C1) Vertices v and w do not share a common neighbour, that is

∀x ∈ V \ {u} : {v, x} /∈ E ∨ {w, x} /∈ E .

(C2) Vertices v and w have a common neighbour x 6= u and {u, x} ∈ E.

(C3) Vertices v and w have a common neighbour x 6= u and {u, x} /∈ E.

It is possible to show that we can restrict ourselves to the following branching.

• In case (C1), we only have to take branches (B1) and (B2).

• In case (C2), we have to execute (B1) and refine the other two branches
further so that each has one subbranch that deletes one, and another that
deletes two additional edges.

• In case (C3), we have to execute (B1). Branch (B2) can be refined into one
branch that deletes an additional edge, and one that adds and deletes one
edge, respectively. Branch (B3) can be refined into one branch that deletes
two additional edges, and one that adds one edge, respectively.

Give a non-trivial worst-case bound on the size of the search tree as explored by
this improved algorithm!

2 / 2


	Problem 6
	Problem 7

