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Abstract

There are two custom ways for predicting RNA secondary structures: minimizing the free energy
of a conformation according to a thermodynamic model and maximizing the probability of a folding
according to a stochastic model. In most cases stochastic grammars are used for the latter alternative
applying the maximum likelihood principle for determining a grammar’s probabilities. In this paper,
building on such a stochastic model, we will analyze the expected minimum free energy of an RNA
molecule according to Turner’s energy rules. Even if the parameters of our grammar are chosen with
respect to structural properties of native molecules only (and therefore independent of molecules’ free
energy), we prove formulae for the expected minimum free energy and the corresponding variance as
functions of the molecule’s size which perfectly fit the native behavior of free energies.
This gives proof for a high quality of our stochastic model making it a handy tool for further inves-
tigations. In fact, the stochastic model for RNA secondary structures presented in this work has for
example been used as the basis of a new algorithm for the (non-uniform) generation of random RNA
secondary structures.

1 Introduction

Numerous results have been published that deal with the expected shape of secondary structure of RNA
molecules. In fact, after the first formal definition of RNA secondary structures was given in [Wat78]
(where the RNA molecule is modeled as a certain kind of planar graph), many authors considered this
model for RNA secondary structures in order to solve enumeration problems related to the combinatorics
of these structures (see for example [SW78, VC85, Neb02a]). In the combinatorial model for RNA sec-
ondary structures, a uniform distribution of those structures is assumed, which means that all secondary
structures of a fixed size n are assumed to be equiprobable. In fact, in the combinatorial model, it is
assumed that base pairing is possible between arbitrary pairs of nucleotides, as only the topology of the
planar secondary structure is considered. Thus, the combinatorial model completely abstracts from the
RNA sequence of which these secondary structures could have been formed.
For this reason, some authors decided to consider a more realistic model for RNA secondary structures, the
so-called Bernoulli-model, which is capable of incorporating information on the possible RNA sequences
for a given secondary structure (see for example [HSS98, Neb04b, ZS84]). However, in [Neb04b], it was
pointed out that both the combinatorial model and the Bernoulli-model for RNA secondary structures are
rather unrealistic. As a consequence, in [Neb02b, Neb04a], the stochastic context-free grammar (SCFG)
approach – so far only used for algorithmic purposes – has been applied for analyzing the expected shape
of RNA molecules analytically. But do we get a realistic picture of RNA molecules this way? Furthermore,
are the shapes considered as typical by such a stochastic model somehow related to the conformation
of minimum free energy? To answer these questions, we decided to analyse the expected minimum free
energy in such a stochastic model for RNA secondary structures that is based on the SCFG approach.
Considering a single RNA molecule, thermodynamics is responsible for the initially linear structure to fold
into a three-dimensional conformation. Here we can assume the resulting structure to (mostly) minimize
the free energy. Accordingly, a straight-forward approach to analyze the expected minimum free energy
of RNA molecules would be to start with random sequences (according to a realistic distribution) and to
determine the (minimum) free energies of the corresponding foldings. Unfortunately, it seems impossible
to handle such an analysis mathematically. Therefore, in this paper we decided to proceed along the
following lines:
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• Starting with a database of native RNA molecules (minimum free energy) and a stochastic context-
free grammar, a model for typical foldings is determined on grounds of the maximum likelihood (ML)
principle for choosing the model’s parameters; here we have to expect that secondary structures
with a high probability according to the resulting model show a similar behavior to the foldings
from the database with respect to the forming of important structural motifs.

• Within the model, the different structural motifs are assigned their contribution to the overall free
energy of the entire folding providing a model for the free energy (at its minimum observed for
native secondary structures).

If we finally determine the expected (minimum) free energy from this model as a function of the structure’s
size, we gain knowledge on the behavior of the minimum free energy for native molecules in correspondence
with the average minimum free energy determined from the database on statistical grounds. According to
this point of view the term expected (minimum) free energy should be understood in this paper. However,
compared to a mere statistical analysis of the database entries our grammar model is not restricted to
fixed sizes of the molecules but allows for the projection of results to sizes not given in the database.
Furthermore, comparing the results of our analysis to the averaged minimum free energy values given in
the database – in case of a match – provides evidence for a realistic behavior of our model with respect
to the different structural motifs (since they all imply different contributions to the overall free energy
but the free energies are left unconsidered for the ML approach). As we will see, this is the case indeed
and our rather sophisticated stochastic context-free grammar can be used to gather further background
information on the space of secondary structures of real RNAs e.g. for validation purposes. Furthermore,
it becomes a handy tool for the random generation of secondary structures with a native appearance; a
corresponding algorithm has already been implemented (see Section 6 for details). In fact, an algorithm
which, for a given structure size n, produces random RNA secondary structures that are – related to the
expected free energy1 of such structures – in most cases realistic is a major improvement over existing
approaches which, for example, are only capable of generating secondary structures uniformly for fixed
size n (i.e. they deal with the unrealistic combinatorial model). Last but not least, our analysis connects
the two most prominent approaches for predicting RNA secondary structure which in our belief is of
interest on its own right.
The plan of this paper is given as follows: In Section 2 we will introduce the formal framework of
this paper by recalling some basics, definitions and prior results related to RNA secondary structure.
Additionally, we will give a short overview on existing literature dealing with computational prediction
methods and free energy minimization. Section 3 provides some information on the material and methods
that are used in this paper. The main contribution of this article is presented in Section 4 where we
will perform an analysis of the expected minimum free energy of a random secondary structure in a
stochastic RNA model. In fact, we will start by deriving a stochastic RNA secondary structure model
based on a comprehensive SCFG that is appropriate with respect to the free energy rules implied by a
common (sequence-dependent) thermodynamic model for computing the free energy of RNA secondary
structures. Afterwards, two different (sequence-independent) free energy models based on this common
thermodynamic model will be constructed and we describe how to calculate asymptotics for the expected
free energy as well as for the corresponding variance of a random secondary structure of size n under the
assumption of either model. In Section 5 the respective analytical free energy results will be compared
to real world data in order to judge the quality our of models. Finally, in Section 6 we give a short hint
at the applicability of our SCFG model for the creation of a non-uniform weighted unranking algorithm
that generates random RNA secondary structures according to a realistic distribution. We conclude by
presenting and comparing the respective analytically obtained expected free energy results for different
types of RNAs.

2 RNA Secondary Structure

Ribonucleic acid (RNA) is a single-stranded nucleotide polymer. In RNA, each nucleotide is a molecule
consisting of a phosphate group, a sugar group (ribose) and one of the four bases adenine (A), cytosine
(C), guanine (G) and uracil (U). The specific sequence of bases along the RNA chain is called the primary
structure of the molecule. The primary structure of an RNA molecule is essentially one-dimensional and

1Of course, the free energy of a secondary structure can not be computed according to one of the common (sequence-
dependent) thermodynamic models if the RNA sequence is unknown (since without sequence, there is no thermodynamics).
Therefore, we have to consider the corresponding free energy of the secondary structure only under the assumption of a
(sequence-independent) energy model that is based on the common thermodynamic model and approximates the energy as
good as possible. Details will follow later.
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is usually modeled as a string over the alphabet Σ = {A,C,G,U}, i.e. it is represented as a sequence of
letters r1r2 . . . rn, where ri is either A, C, G or U.
In vivo, single-stranded RNA chains bend and twine about themselves. The reason for this behavior is
that the complementary bases A and U resp. C and G form stable base pairs with each other (by creating
hydrogen bonds). In addition to these stable Watson-Crick pairs, there may occur weaker base pairs,
called GU wobble pairs, which are formed by the non-complementary bases G and U. All these pairs
(Watson-Crick and GU wobble) are called canonical base pairs, as they are most common. Other pairs,
called non-canonical base pairs, may also occur, but they are not as stable as the canonical ones.
Since there are only few restrictions on (complementary) bases to pair, the linear RNA chain is folded into
a three-dimensional conformation, called the tertiary structure of the RNA molecule, which determines
its biochemical activity. It is customary in science to simplify the study of the tertiary structure of an
RNA molecule by allowing only non-crossing base pairs such that the resulting structure remains planar.
Accordingly, this restriction yields a two-dimensional conformation, called the secondary structure of the
molecule. By investigating secondary structures of RNA instead of the corresponding tertiary structures,
the focus of attention is hence set only on what base pairs are involved, and not on the three-dimensional
conformation of the RNA chain.

2.1 Definitions and Prior Results

Following the convention that RNA sequences are written in the 5′ → 3′ direction, we number the bases
of an RNA sequence from 1 to n. This leads to the following definition of a secondary structure of size n:

Definition 2.1. ([ZMT99]) A secondary structure S for an RNA sequence R of length2 n is a finite set
(possibly empty) of base pairs. A base pair between i and j (1 ≤ i < j ≤ n) is denoted by i.j. A few
constraints are imposed:

1. Two base pairs, i.j and i′.j′ ∈ S are either identical, or else i 6= i′ and j 6= j′. Thus base triplets
are deliberately excluded from the definition of secondary structure.

2. Pseudoknots are prohibited. That is, if i.j and i′.j′ ∈ S, then, assuming i < i′, either i < i′ < j′ < j
(i.j includes i′.j′) or i < j < i′ < j′ (i.j precedes i′.j′) .

3. Sharp U-turns are prohibited. A U-turn, called hairpin loop, must contain at least 3 bases. That
is, if i.j ∈ S, then |j − i| ≥ 4.

According to constraint 1) of Definition 2.1, each i occurs either in exactly one pair or in no pairs, and i
is described as paired or unpaired, accordingly. Constraints 1) to 3) of Definition 2.1 limit the number of
possible foldings of a given RNA molecule in a very significant way. However, Definition 2.1 still allows
an exponential number of biologically impossible structures, since unstable conformations are considered
and any two bases are allowed to pair.
To distinguish between paired and unpaired bases resp. double-stranded and single-stranded regions in
RNA secondary structures, we will use the following definition:

Definition 2.2. ([ZMT99]) A group of two or more consecutive3 base pairs is called a helix. The first
and last are the closing base pairs of the helix. They may be written as i.j and i′.j′, where i < i′ < j′ < j.
Then i.j is called the external closing base pair and i′.j′ is called the internal closing base pair.

Hence, any secondary structure S can be decomposed into single-stranded regions and helices which,
according to Definition 2.2, do not allow isolated base pairs. However, in many models for RNA secondary
structures like in our stochastic grammar, isolated base pairs – although being unstable – are allowed.
However, for our grammar a large probability for a helix to be extended by additional base pairs excludes
isolated pairs from the typical structure considered.
For our further investigations, we need to distinguish between different kinds of single-stranded regions.
Therefore, we first have to consider the following definition:

Definition 2.3. (k-loop decomposition [ZS84, Zuk86]) If i.j is a base pair in the secondary structure S
and if i < κ < j, we say that κ is accessible from i.j if there is no i′.j′ in S such that i < i′ < κ < j′ < j.
Similarly, if κ.l is also in S, we say that the base pair κ.l is accessible if both κ and l are accessible. The

2For the sake of simplicity, we will say “secondary structure S of size n” in the sequel, where n is given by the length of
the underlying sequence, not the cardinality of set S.

3A group of k ≥ 2 consecutive base pairs means k base pairs (i+ 1).(j − 1), . . . , (i+ k).(j − k) such that neither the two
bases (i+ k + 1) and (j − k − 1) nor the two bases i and j (if existing) form together a base pair.
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set of (k − 1) base pairs and k′ unpaired bases accessible from i.j is called the k-loop (or k-cycle) closed
by i.j. The (possibly empty) set of base pairs in a k-loop constitute the interior base pairs of the k-loop.
The closing base pair is called the exterior base pair. k′ is called the size of the k-loop. The collection of
(k− 1) base pairs and k′ unpaired bases which are accessible from no base pair (the exterior or free base
pairs and bases) is called the null k-loop or exterior loop. It is easy to see that any secondary structure
S decomposes the sequence 1, 2, . . . , n uniquely into k-loops (for varying k) s0, s1, s2, . . . , sm, where s0 is
the null k-loop and m > 0 iff S is nonempty 4.
Biochemists have developed their own nomenclature for k-loops. The various cases and subcases are
given as follows:

1. k = 1: A 1-loop is called a hairpin loop.

2. k = 2: Let i′.j′ be the base pair accessible from i.j. Then the 2-loop is called

(a) a stacked pair, if i′ − i = 1 and j − j′ = 1,

(b) a bulge (loop) if i′ − i > 1 or j − j′ > 1, but not both, and

(c) an interior loop5 if i′ − i > 1 and j − j′ > 1.

3. k ≥ 3: These k-loops are called multi-branched loops, multiple loops or simply multiloops.

In the style of [ZMT99], the loop closed by a base pair i.j will be denoted by L(i.j); the exterior loop
will be denoted by Le.
Besides many other possible representations, RNA secondary structures can be modeled as strings over
the alphabet Σ := {(((, ))), •}, where a dot represents an unpaired nucleotide and a pair of corresponding
brackets ((( ))) represents two bases in the RNA molecule that are paired (see, e.g. [VC85]). However, it
should be clear that these dot-bracket representations abstract from the RNA sequence, as they only
consider the number of base pairs (and unpaired bases) and their positions.

2.2 Computational Prediction

In bioinformatics, we aim for algorithms predicting the secondary structure of non-coding RNA from its
sequence. Due to an exponential growth of the number of possible conformations with respect to the
molecule’s size, a brute-force attempt is out of reach. As a consequence, more sophisticated methods
have been developed. One class of such algorithms builds on SCFG models, which learn the typical
structural behavior of RNAs from databases of native molecules on stochastic grounds. Then, given
an unknown sequence, the most probable folding is computed giving rise to rather accurate predictions
(see e.g. [KH99, KH03] for details). However, the most common approach is free energy minimization,
i.e. minimizing the change of the Gibbs free energy in the chemical process of folding the RNA molecule.
As in nature, every RNA molecule seeks to achieve a minimum of free energy by folding into a higher-
dimensional conformation, it is assumed that the native structure is the one with lowest free energy.
The most successful and popular method for energy minimization over the last 30 years has been the
use of dynamic programming algorithms. In the pioneering work [NPGK78], each base pair i.j in a
given secondary structure S is assigned an energy e(i.j), such that the overall energy of the secondary
structure S is given by E(S) =

∑
i.j∈S e(i.j). A corresponding dynamic programming algorithm for

folding an RNA molecule that finds a conformation of minimum free energy using thermodynamics
and auxiliary information was presented in [ZS81]. This algorithm uses loop-dependent energy rules to
compute the free energy of each loop, such that the overall energy of a secondary structure S is given
by E(S) = e(Le) +

∑
i.j∈S e(L(i.j)). During the following years, this dynamic programming algorithm

based on thermodynamic parameters has been improved several times [SKMC83,ZS84,Zuk89a].
However, due to imprecisions in the energy rules and the thermodynamic parameters, as well as the fact
that certain chemical aspects (like for example the influence of enzymes or the effect of co-transcriptional
folding) have not been incorporated, the predicted optimal (minimum free energy) structure was often
not the native one. For these reasons, several efficient algorithms have been developed over the years
for generating a set of suboptimal foldings (see, e.g., [WFHS99, Zuk89b]). Implementations of these
algorithms are used for example in the MFOLD software [Zuk03] or in the Vienna RNA package [Hof03],
which have become widely used tools.

4Note that this decomposition was first introduced in [SKMC83] and was later redefined. In the original definition, the
closing pair belongs to the k-loop, but in the redefinition given here, the closing base pair is no longer contained in the
k-loop.

5In the sequel, such an interior loop will sometimes be called (i′− i− 1)× (j− j′− 1) interior loop to specify the number
of unpaired bases between the paired bases i and i′, as well as j and j′, respectively.
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3 Methods

In this section, we will provide some information on the material and methods that will be used in
the sequel, including thermodynamic models for RNA secondary structure, RNA modeling by stochastic
context-free grammars and the considered RNA databases.

3.1 Thermodynamic Models

In the early 1970s, biochemists hypothesized that each base pair in a helix contributes to the stability of
that helix and that the contribution of a base pair depends on its adjacent base pairs [GC73,BDTU74].
This yielded a new model in which the thermodynamic stability of a given base pair is dependent on
the identity of its nearest neighbor, the so-called individual nearest-neighbor (INN) model. Later on, an
expanded nearest-neighbor model for formation of RNA helices with canonical base pairs was presented,
which was termed the individual nearest-neighbor hydrogen bond (INN-HB) model [XSB+98,MSZT99].
Thermodynamics for RNA secondary structures have also been studied for all other common substruc-
tures. These studies led to a number of different thermodynamic parameters for certain (special) types of
loops along with corresponding loop-dependent free energy rules. These results are summarized in [ST95]
(for the INN-model), as well as in [MSZT99] and in [ZMT99] (for the INN-HB model).
In this paper, we will use the INN-HB model with loop-dependent energy rules [XSB+98, MSZT99] to
compute the free energy of a given RNA secondary structure S6. The thermodynamic parameters that
will be used here are the free energy data from Mathews et al. [MSZT99], which were used for version
3.0 of the MFOLD software [Zuk03]. The corresponding thermodynamic model for RNA secondary
structures is derived from [MSZT99] and [ZMT99]. It includes basically all of the latest free energy rules
and parameters7 and will be the foundation of our analysis.
For a more detailled description of this thermodynamic model, i.e., for more information on the distin-
guished substructures and the corresponding free energy contributions, see Section8 Sm-I. Finally, it
should be mentioned that this model is most commonly called Turner’s energy model and therefore, we
will also use this name in the sequel.

3.2 Stochastic RNA Models

Stochastic context-free grammars are an extension of context-free grammars and a known concept to
model RNA secondary structures (see, e.g. [SBH+94]). For an introduction on stochastic context-free
languages, see for example [HF71]. A formal definition is given as follows:

Definition 3.1. ([Neb04a, Neb02b]) A stochastic context-free grammar (SCFG) is a 5-tuple Gst =
(Ist, Tst, Rst, Sst, Pst), where Ist (resp. Tst) is an alphabet (finite set) of intermediate (resp. terminal)
symbols (Ist and Tst are disjoint), Sst ∈ Ist is a distinguished intermediate symbol called axiom and
Rst ⊂ Ist × (Ist ∪ Tst)

∗9 is a finite set of production rules; in the sequel, we will write A → α instead
of f = (A,α) ∈ Rst. Pst is a mapping from Rst to [0, 1] such that each rule f ∈ Rst is equipped with a
probability pf := Pst(f). The probabilities are chosen in such a way that for all A ∈ Ist the equality∑

f∈Rst,f=A→α
pf = 1

holds. For f = A→ α ∈ R with pf = Pst(f) we will write pf : A→ α in the sequel.

The concepts of derivation and ambiguity for SCFGs are the same as for usual context-free grammars.
This means any word w ∈ L(Gst) is generated in the same way as by the corresponding context-free
grammar (Ist, Tst, Rst, Sst). However, we want to stress an important difference with respect to am-
biguity between typical applications of SCFGs and ours: When using SCFGs for structure prediction,
each sequence has several leftmost derivations representing the different secondary structures possible.
Accordingly, a grammar used in this context has to be syntactically ambiguous. However, the so-called
semantic ambiguity, i.e. several derivations representing the same structure, has to be prevented. Since

6Note that only Watson-Crick and wobble GU pairs are allowed in this INN-HB model, as nearest neighbor rules
break down for non-canonical base pairs. This means that non-canonical base pairs in helices must instead be treated as
mismatched pairs for the computation of free energies.

7There is only one exception: coaxial stacking (which is a favorable interaction of two helices stacked end to end in
multi- and exterior loops) is not considered in our model.

8All references starting with Sm are references to the supplementary material.
9When A is a set of symbols, A∗ denotes the set of all finite strings of symbols of A completed by the empty string ε.
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we will use an SCFG to generate dot-bracket representations (instead of nucleotide sequences), a syntac-
tically unambiguous grammar is the right choice; each secondary structure can be generated in exactly
one way.
For a SCFG Gst := (Ist, Tst, Rst, Sst, Pst), the mapping Pst : Rst → [0, 1] provides a probability distribu-
tion on the production rules that have the same left-hand side. It has to be mentioned that in many cases,
the probability distribution on the production rules of a SCFG Gst implies a probability distribution on
the words of the language L(Gst). This especially is always the case when choosing the probabilities
according the the maximum likelihood principle [CG98]. The SCFG Gst is then called consistent.
Considering a consistent SCFG Gst, the mapping Pst : Rst → [0, 1] assigns a probability Pr[d] to each
derivation d of a word w ∈ L(Gst). The probability Pr[d] of a given derivation d is equal to the product of
the probabilities of the production rules used in d. Furthermore, we can use the mapping Pst to compute
the probability Pr[w] for each word w ∈ L(Gst). As the consistent SCFG Gst can be ambiguous, a word
w ∈ L(Gst) may have more than one derivation. In fact, if a word w ∈ L(Gst) has k different leftmost

derivations d1, . . . , dk, then the probability Pr[w] is given by
∑k
i=1 Pr[di]. Thus, if the consistent SCFG

Gst is unambiguous, then the probability Pr[w] of a word w ∈ L(Gst) is equal to the product of the
probabilities Pst(f) of the production rules f ∈ Rst that have to be used to generate w.

Training of Stochastic Context-Free Grammars

The probabilities of a SCFG Gst which generates the language L(Gst) can be trained from a database
of words w ∈ L(Gst). The training of SCFGs is based on the maximum likelihood principle which
was invented by R. A. Fisher around 1912. Generally speaking, the maximum likelihood method is the
procedure of finding the value of one or more parameters for a given statistical model. In fact, maximum
likelihood estimation is a popular statistical method that is typically used for fitting a statistical model
to known sets of data in order to provide estimates for the model’s parameters. Particularly, given a fixed
set of data (a fixed sample from a larger set) and the corresponding underlying probability model, the
maximum likelihood method can be used to determine those values of the considered model parameters
that make the data more likely than any other choice of these parameters would make them.
Obviously, in the context of training of a SCFG Gst from a database of words w ∈ L(Gst), the fixed
sample is given by the words in the database and the considered model parameters are the probabilities
of the production rules of Gst. Hence, training the SCFG Gst fits the probabilities of the production rules
of Gst so that the resulting probabilities of the words w ∈ L(Gst) closely match the sample set of words
provided for the training. Several methods for the empirical estimation of SCFGs have been proposed
in the literature which provide consistent SCFGs. For example, assigning relative frequencies found by
counting the production rules used in the leftmost derivations of a finite sample of words w ∈ L(Gst)
results in a consistent SCFG Gst and theses probabilities are then a maximum likelihood estimate [CG98].
For unambiguous SCFGs, the relative frequencies can be counted efficiently, as for every word there is
only one leftmost derivation to consider.

Stochastic Context-Free Grammars and Probability Generating Functions

According to the ideas of Chomsky and Schützenberger [CS63], it is possible to translate a consistent
SCFG into a probability generating function, defined as follows:

Definition 3.2. ([SF01]) Given a random variable X that takes on only nonnegative integer values, with
pk := Pr[X = k], the function P (u) =

∑
k≥0 pku

k is called the probability generating function (PGF) for
the random variable.

When deriving a probability generating function from a SCFG, the kth coefficient is obviously given
by
∑
w∈L(Gst)∩Tk

st
Pr[w], i.e., the probability that a word of length k is generated. Thus, for a given

consistent SCFG Gst and the corresponding probability generating function P (z) =
∑
k≥0 pkz

k, the
probabilities pk = Pr[X = k] must provide a probability distribution on the words w ∈ L(Gst), and
therefore coefficients must sum up to 1, i.e. P (1) = 1 must hold. Consequently, by evaluating (the closed
form10 of) the function P (z) =

∑
k≥0 pkz

k derived from a SCFG Gst for z = 1, i.e. by computing P (1),
we can check whether the SCFG Gst is consistent or not.

Remark. As indicated by the corresponding probability generating function, a consistent stochastic
context-free grammar implies a distribution on the length of its words. In general longer words tend
to be generated with smaller probability since we have to apply more grammar rules each implying a

10A closed form of a generating function P is a representation of P without sums, integrals etc. which allows for the
evaluation of P (z) for appropriate values of z.
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factor (typically) less than 1 to the probability. However, for our analysis we will switch to conditional
expectations fixing the size of the words under consideration. This way we sort of cut out a part of the
overall distribution making it a probability distribution on its own by normalizing. Here one could ask
for a separated training of the grammar’s parameters for different sizes of the input. However, due to
the self-similar structure inherent to context-free languages (see pumping-lemma) this would not make a
significant difference for inputs like ours which imply the highly iterated application of all the different
production rules.

Note that in order to compute the desired analytical free energy results, we will use both stochastic
context-free grammars and the methods of (probability) generating functions. To keep our presentation
mostly self-contained, we decided to recall the fundamental definitions concerning generating functions
in Section Sm-II. For more information, see for example [FS09].

3.3 RNA Data

In order to obtain a realistic RNA secondary structure model, we decided to derive a stochastic model for
RNA secondary structures according to biological data. To reach this goal, we will consider a database of
known RNA sequences and their corresponding secondary structures (i.e., in this database each structure
of size n is given as pair of dot-bracket representation of length n and corresponding primary structure
of length n). Since these secondary structures are supposed to be correct foldings of the corresponding
sequences, we can assume that any structure contained in the considered database has minimum free
energy (or something close to it) among all structures on the same sequence11.
Moreover, the used database should only contain structures of the same type of RNA or of similar RNA
types to ensure the accurray of the resulting RNA structure model (for RNA structures of that type(s)).
Therefore, we will consider the following different sets of RNA secondary structures S 6= ∅12 in the sequel:

• tRNA database consisting of 2163 structures (from [SHB+98]),

• 5S rRNA database of 1292 structures (from [SBEB02]),

• SSU rRNA database of 1308 structures (from [WdPWW02]),

• LSU rRNA database of 558 structures (from [WRdP+01]).

In fact, at the end of this paper, we will present analytical expected free energy results for any of these
four different types of RNA. However, for the exemplary derivation of a corresponding stochastic model
and of the desired results on free energies, we decided to use a database of SSU and LSU rRNA secondary
structures. This database is composed of our SSU rRNA database from [WdPWW02] and our LSU rRNA
database from [WRdP+01] and thus contains 1308 + 558 = 1866 RNA secondary structures S 6= ∅. For
the sake of simplicity, this database of SSU and LSU rRNA structures will be referred to as biological
database in the following sections.
We decided to exemplarily consider SSU and LSU rRNAs, since they are more interesting than the
rather short and hardly variant tRNAs and 5S rRNAs. This is due to the fact that the much longer
sequences of these SSU or LSU rRNA molecules imply a significantly larger set of possible structural
motifs. This makes us to assume that a corresponding stochastic model for SSU and/or LSU rRNA
secondary structures is usually less accurate than for shorter, less invariant RNA structures, since the
probabilities of the production rules obtained by training are less explicit due to the larger variety of
structure motifs. Moreover, it can be assumed that a corresponding stochastic model derived for two
(or more) mixed types of RNAs is probably not as accurate as a corresponding model derived only for
a single type (if the mixed types are not similar enough to obtain almost the same rule probabilities for
the whole production set of the underlying SCFG). For these reasons, we may assume that if we obtain
realistic results when considering SSU and LSU rRNAs (at once), then similar realistic results can also
be derived in the same way for any of our four different types of RNA.

11Of course, using Turner’s energy model to compute the free energy of an RNA secondary structure, this must not always
hold, since the thermodynamic parameters are still incomplete. However, since this model is commonly used for free energy
minimization algorithms, this assumption seems to be convenient.

12Note that due to the constraint S 6= ∅, no dot-bracket representations of completely unpaired structures are contained in
class S; this is in accordance with MFOLD, where only structures S 6= ∅ can be constructed. Since for each sequence length
n, there is only one unfolded structure S = ∅ and its free energy is equal to 0, this does not change our asymptotic results
for a given stochastic model. However, this constraint could improve the quality of the underlying stochastic structure
model, as the model’s parameters (the production probabilities of the corresponding SCFG) would become less appropriate
for a training set containing unfolded secondary structures.
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In the following section, we will describe the derivation of a stochastic model for RNA secondary structures
from a given database (of known structures of one or more similar types of RNA). Assuming that all
secondary structures in the considered database are minimum free energy structures (or something close
to them), we obtain a stochastic model for the behavior of different structural motifs in native structures
(of the considered RNA types only, not for arbitrary RNAs), from which the expected (near-) minimum
free energy of those structures can be derived. It is important to mention that for modeling the different
structural motifs, only the secondary structures in the given database are relevant; the corresponding
RNA sequences are not considered. However, the sequences are in fact used (along with the secondary
structures) for the calculation of averaged free energy contributions, since the free energies of structures
are strongly sequence-dependent (according to Turner’s energy model).

4 Analysis of the Free Energy in a Stochastic RNA Model

Our aim is to determine the expected minimum free energy G◦37(S) and the corresponding variance of a
secondary structure S 6= ∅ of size n under the assumption of a stochastic model derived from biological
data. Training this model based on structural features only (leaving the free energy unconsidered), a
match of the resulting expected free energy, its variance and corresponding confidence intervals to the
free energies of native structures used for training would prove the quality of our model (since all different
types of loops yield different contributions to the free energy, only an overall realistic model ought to
imply a realistic free energy). As we will prove throughout this paper, this is the case indeed.

4.1 RNA Secondary Structure Model

As our first goal, we want to derive an appropriate SCFG model for RNA secondary structures according
to biological data. In particular, we want to exemplarily use our biological database of SSU and LSU
rRNA secondary structure data to obtain a corresponding realistic RNA secondary structure model.
Let S be the combinatorial class of all different dot-bracket representations of secondary structures
S 6= ∅. This class S can be modeled by a simple (unambiguous stochastic) context-free grammar with
the following production rules:

S → CA, A→ (((L)))C, A→ (((L)))CA,
L→ • • •C, L→ CA, C → ε, C → •C.

Here, non-terminal symbol S produces the whole structure (the exterior loop) which may not be unfolded.
Substructures containing at least one base pair (in one or more adjacent helical regions) are produced by
symbol A. Moreover, non-terminal symbol L generates loops (of any kind) and C produces single-stranded
regions (of arbitrary length).
However, a more sophisticated grammar is needed in order to derive the desired free energy results since
this grammar does not distinguish structural motifs with different contributions to the overall free energy.
In fact, the basis of our stochastic secondary structure model will be a comprehensive SCFG that has to
serve two purposes at the same time: accomodating the energy parameters and still being unambiguous.
Accordingly, the desired SCFG for modeling the class S has to distinguish between different substructures;
it must distinguish not only between the different types of k-loops, but also between some special types
for hairpin, bulge and interior loops for which there are different free energy rules according to the
thermodynamic model as proposed by Turner.
We can thus construct an appropriate grammar by starting with a simple (e.g., the former) unambiguous
context-free grammar for class S and then repeatedly replacing an old rule by a number of new, more
specialized productions for the various special cases to be distinguished. Consider, for example, the
production rule L→ CA (of the former simple grammar for S). This rule generates any possible k-loop
for k ≥ 2 (any loop that is not a hairpin loop). By replacing it by the two rules

L→ C(((L)))C, L→ C(((L)))CA,

it becomes possible to generate any possible 2-loop (i.e., a stacked pair, a bulge (on the left or on the right),
or an interior loop) and all kinds of multiloops (i.e., any k-loop with k ≥ 3) with different productions,
which should increase the accuracy of the SCFG model. By additionally replacing the first of these two
new rules, L→ C(((L)))C, by the four productions

L→ (((L))), L→ •C(((L))), L→ (((L)))C • , L→ •C(((L)))C • ,
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the different types of 2-loops can be generated with distinct rules, yielding a more realistic secondary
structure model and later allowing us to assign each type its corresponding loop-dependent free energy
parameters. By further repeated replacements of production rules, we can finally obain an appropriate
context-free grammar which unambiguously generates the language S and also matches the thermody-
namic model.
In this work, we decided to use the following grammar which has been constructed by modifying the
unambiguous context-free grammar given in [Neb02b,Neb04a]:

Definition 4.1. (MoNStER-grammar13)
A context-free grammar which generates class S is given byG = (IG,ΣG, RG, S), where IG = {S, T, C,A, L,G,B, F,H, P,Q,R, J,K,M,N,U},
ΣG = {(((, ))), •} and RG contains the following rules:

f1 = S → TAC,
f2 = T → TAC,
f3 = T → C,
f4 = C → C • ,
f5 = C → ε,

 exterior loop

f6 = A→ (((L))),
f7 = L→ (((L))),

}
initiate and extend stem

f8 = L→M, initiate multiloop

f9 = L→ P,
f10 = L→ Q,
f11 = L→ R,

 initiate interior loop

f12 = L→ F, initiate hairpin loop
f13 = L→ G, initiate bulge loop

f14 = G→ (((L))) • ,
f15 = G→ (((L)))B • • ,
f16 = G→ •(((L))),
f17 = G→ • •B(((L))),
f18 = B → B • ,
f19 = B → ε,


bulge loops

f20 = F → • • • ,
f21 = F → • • • • ,
f22 = F → • • • • •H,
f23 = H → H • ,
f24 = H → ε,

 hairpin loop

f25 = P → •(((L))) • ,
f26 = P → •(((L))) • • ,
f27 = P → • •(((L))) • ,
f28 = P → • •(((L))) • • ,

 small interior loops

f29 = Q→ • •(((L)))K • • • ,
f30 = Q→ • • •J(((L)))K • • ,
f31 = R→ •(((L)))K • • • ,
f32 = R→ • • •J(((L))) • ,
f33 = J → J • ,
f34 = J → ε,
f35 = K → K • ,
f36 = K → ε,


other interior loops

f37 = M → U(((L)))U(((L)))N,
f38 = N → U(((L)))N,
f39 = N → U,
f40 = U → U • ,
f41 = U → ε.

 multiloop

In order to construct an unambiguous SCFG Gsto for class S, we can immediately choose Gsto =
(IG,ΣG, RG, S, P ) and hence only have to find the mapping P : RG → [0, 1] such that each rule f ∈ RG
is equipped with a probability pf := P (f). To ensure that Gsto gets consistent, we decided to assign
relative frequencies to the production rules in RG that are derived from our biological database. The
resulting probabilities can be found in Table 2 and the last column of Table 5 shown in Section Sm-IV.

13MoNStER is sort of an acronym for Modeling Now Stochastically the free Energy of RNA.
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4.2 (Static) Free Energy Model

Next, we aim at determining the expected minimum free energy G◦37(S) of a random secondary structure
S 6= ∅ of size n under the assumption of our stochastic model derived from SSU and LSU rRNA secondary
structure data.
To reach this goal, we construct a bivariate generating function that could be written as

Dsto(z, y) =
∑

s∈S

(
Pr[s] · ygsto(s)

)
· z|s|,

where gsto(s) denotes the free energy associated with the dot-bracket representation s ∈ S under the
assumption of a static (basically sequence-independent) free energy model. This energy model is derived
from Turner’s (strongly sequence-dependent) thermodynamic model for computing the free energy G◦37(S)
of a secondary structure S 6= ∅ (on an RNA sequence R, see above).
In fact, to obtain corresponding fixed, sequence-independent (and also length-independent) values for the
different contributions, we decided to use average values for all the different free energy contributions
that are considered in Turner’s thermodynamic model.

Remark. This approach does not imply a one-to-one correspondence of our generating functions to
Turner’s model of free energy but – for linearity of expectation – such a correspondence is achieved
in expectation. For our purposes, i.e. for computing the expected minimum free energy, this makes no
difference at all.

Note that this way, for example, instead of the sequence-dependent free energy contribution for terminal
mismatch and/or dangling end stacking14 (in a multiloop), we will use the corresponding average value
(found by sequence counting15 using our biological database) which will be denoted by stackingMulti. All
the resulting average free energy values (i.e., suitable values for the free energy parameters used in the
following system (1) obtained by sequence counting using our biological database) are given in Table 3
shown in Section Sm-IV.
Thus, according to the used thermodynamic model and [CS63], this immediately yields the following
system of equations, which can be solved for the variable S to obtain the desired bivariate generating
function Dsto(z, y):

S = p1 · y(stackingExterior+termAUpenEL) · T ·A · C,
T = p2 · y(stackingExterior+termAUpenEL) · T ·A · C + p3 · C,
C = p4 · C · z + p5 · 1,
A = p6 · z · L · z,
L = p7 · y(se) · z · L · z+

p8 · y(MBLinitiation+stackingMulti+termAUpenML) ·M+

p9 · P + p10 ·Q+ p11 ·R+ p12 · F + p13 · y(ldeb) ·G,
G = p14 · y(seBulge) · z · L · z · z+

p15 · y(2·termAUpenBL) · z · L · z ·B · z2+

p16 · y(seBulge) · z · z · L · z+
p17 · y(2·termAUpenBL) · z2 ·B · z · L · z,

B = p18 ·B · z + p19 · 1,
F = p20 · y(ldeh+termAUpenHL+GGGLoopBonus+cHairpinOf3) · z3+

p21 · y(ldeh+tmseh+GGGLoopBonus+cHairpin+tetra) · z4+

p22 · y(ldeh+tmseh+GGGLoopBonus+cHairpin) · z5 ·H, (1)

H = p23 ·H · z + p24 · 1,
P = p25 · y(ile1x1) · z · z · L · z · z+

14This means the sequence-dependent free energy contribution for the stacking interaction of a base pair (i.e., the closing
base pair or any accessible base pair in multiloops, and the free base pairs in exterior loops) with its adjacent (i.e., preceding
and/or following) unpaired bases in multi- and exterior loops.

15This means that the needed average values are computed according to the complete structures (secondary structures
and corresponding RNA sequences): for each free energy contribution needed for computing the energy of a certain loop
type, we sum up all the corresponding (sequence- and/or length-dependent) energy values for all occurring loops of this
type. Then, we divide this sum by the observed number of those loops.
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p26 · y(ile1x2) · z · z · L · z · z2+

p27 · y(ile1x2) · z2 · z · L · z · z+
p28 · y(ile2x2) · z2 · z · L · z · z2,

Q = p29 · y(2·tmsei+ldei+asym) · z2 · z · L · z ·K · z3+

p30 · y(2·tmsei+ldei+asym) · z3 · J · z · L · z ·K · z2,

R = p31 · y(2·tbp1xNil+ldei+asym) · z · z · L · z ·K · z3+

p32 · y(2·tbp1xNil+ldei+asym) · z3 · J · z · L · z · z,
J = p33 · J · z + p34 · 1,
K = p35 ·K · z + p36 · 1,

M = p37 · y(2·stackingMulti+2·termAUpenML) ·
(
U · z2 · L

)2 ·N,
N = p38 · y(stackingMulti+termAUpenML) · U · z2 · L ·N + p39 · U,
U = p40 · U · z + p41 · 1.

Remark. Even if we use fixed (sequence-independent) expected energy contributions determined from
our database to model the strongly sequence-dependent Turner energy model, the resulting expected
minimum free energies – if consistent with the values given in the database – still provide evidence for
our model to be realistic. Inspecting system (1) together with Table 3 yields the observation that rather
different contributions to the free energy show up for different substructures. Thus, only the right behavior
of our model with respect to different substructures are likely to introduce the right contributions to the
overall free energy.

Using the generating function Dsto(z, y), we can easily obtain the following results:

Theorem 4.1. Under the assumption of our static free energy model (derived from SSU and LSU
rRNAs), the expected minimum free energy G◦37(S) (in kcal/mol) of a secondary structure S 6= ∅ of size n
is asymptotically given by

µsto,n := −0.24783007n+ 39.16513746 +O
(

1

n

)
, n→∞.

Theorem 4.2. Under the assumption of our static model (derived from SSU and LSU rRNAs), the
variance of the minimum free energy G◦37(S) of a random secondary structure S 6= ∅ of size n (in kcal2/mol2)
is asymptotically given by

σ2
sto,n := 2.531493699n+O (1) , n→∞.

All these analytical (free energy) results are proven in Section Sm-III, by giving a detailled description
on how we calculated the expected free energy µsto,n and the corresponding variance σ2

sto,n of a random
secondary structure of size n under the assumption of our model.
Figure 1 shows that the asymptotical representations (asymptotics for coefficients of generating functions)
for the expected free energy of a secondary structure of size n and the corresponding variance as presented
in Theorems 4.1 and 4.2, respectively, are accurate, since for n→∞, they converge towards the respective
exact values (exact coefficients of generating functions).
However, it might seem inaccurate that for structure sizes up to about n = 150, the asymptotical expected
free energies are positive, which means that for RNA molecules of these sizes n, the completely unpaired
structure (having free energy 0) would be energetically more favorable and thus, they would all remain
unfolded. Nevertheless, as the exact values for the expected free energies are all negative16, this does not
imply that the described model is inaccurate; it is only a consequence of the not really fast convergence
of the asymptotical values (for given size n) towards the exact values. For sizes appropriate for rRNA
our asymptotic is of sufficient precision. Furthermore, in Section 7 we will present corresponding results
for different types of RNA (e.g. tRNA) where such small sizes are much more appropriate and where we
observe a negative expected minimum free energy even for n = 0.

16Note that the exact expected free energy values are only positive for structure sizes of n = 5 to about n = 20. However,
the described model only considers SSU and LSU rRNA structures and these sizes n are definitely too short for an SSU or
LSU rRNA molecule. Thus, we may ignore these few positive values.
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Figure 1: Plots of the coefficient asymptotics (blue) for the expected minimum free energy G◦37(S) (left)
and the corresponding variance (right) of a secondary structure S 6= ∅ of size n under the assumption
of our static free energy model, respectively, as well as points for the respective exact coefficients (cyan,
obtained from the corresponding generating functions).

4.3 Alternative (Dynamic) Free Energy Model

The model of the last section considered contributions to the free energy implied by loop lengths not
based on the grammar itself but as average values derived from the database. This is sufficient to obtain
the realistic behavior of our model with respect to the different loop types and their expected numbers
of occurrence but provides no feedback with respect to loop length. Therefore, in this section, we will
work out a different free energy model for our stochastic grammar for RNA secondary structures, where
the average values for length-dependent contributions are computed in a different way. In fact, given a
dot-bracket representation s ∈ S, we now consider the value of ĝsto(s), which denotes the free energy
associated with s under the assumption of this alternative dynamic free energy model, instead of the
value of gsto(s).
As any of these length-dependent free energy contributions depends on the number of unpaired nucleotides
in loops of a certain type, we will compute the average free energy contribution of a single unpaired
nucleotide in loops of the respective type and apply the resulting averages to each unpaired nucleotide.
For example, consider a hairpin loop L(i.j) closed by the base pair i.j in a given secondary structure
s ∈ S. Then (besides other contributions), we have to add the length-dependent free energy contribution
for the initiation of this hairpin loop, i.e., a contribution which depends only on the number j − i − 1
of unpaired bases between the closing base pair i.j. In the static model, instead of the correct initiation
value (according to Turner’s energy parameters), we added the averaged energy value ldeh (for the whole
hairpin loop) to the overall energy gsto(s). However, in the dynamic model, the averaged free energy
contribution ldehPerNuc is added for each unpaired nucleotide within L(i.j), such that for the initiation
of this hairpin loop, we have to add the contribution (j − i − 1) · ldehPerNuc to the overall free energy
ĝsto(s). Again, this provides a correspondence to Turner’s model in expectation.
Using such average values for each nucleotide in a loop, the length-dependence is modeled better than
before, as loops of different lengths are assigned different free energy values, whereas by using fixed
average values for each loop, very small loops are assigned the same free energy as extremely large loops.
By modifiying system (1), we immediately obtain an appropriate system of equations for this new free
energy model for our stochastic model for RNA secondary structures. The resulting system is given as
follows:

S = p1 · y(stackingExterior+termAUpenEL) · T ·A · C,
T = p2 · y(stackingExterior+termAUpenEL) · T ·A · C + p3 · C,
C = p4 · C · z + p5 · 1,
A = p6 · z · L · z,
L = p7 · y(se) · z · L · z + p8 · y(MBLOffset)·

y(stackingMulti+termAUpenML+MBLHelixPenalty) ·M+

p9 · P + p10 ·Q+ p11 ·R+ p12 · F + p13 ·G,
G = p14 · y(seBulge+ldebPerNuc) · z · L · z · z+

p15 · y(2·termAUpenBL+2·ldebPerNuc) · z · L · z ·B · z2+

p16 · y(seBulge+ldebPerNuc) · z · z · L · z+
p17 · y(2·termAUpenBL+2·ldebPerNuc) · z2 ·B · z · L · z,
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B = p18 · y(ldebPerNuc) ·B · z + p19 · 1,
F = p20 · y(termAUpenHL+GGGLoopBonus+cHairpinOf3)·

y(3·ldehPerNuc) · z3 + p21 · y(tmseh+GGGLoopBonus+tetra)·
y(4·ldehPerNuc+4·cHairpinPerNuc) · z4 + p22 · y(tmseh)·
y(GGGLoopBonus+5·ldehPerNuc+5·cHairpinPerNuc)z5 ·H,

H = p23 · y(ldehPerNuc+cHairpinPerNuc) ·H · z + p24 · 1, (2)

P = p25 · y(ile1x1) · z · z · L · z · z+
p26 · y(ile1x2) · z · z · L · z · z2+

p27 · y(ile1x2) · z2 · z · L · z · z+
p28 · y(ile2x2) · z2 · z · L · z · z2,

Q = p29 · y(2·tmsei+asym+5·ldeiPerNuc) · z2 · z · L · z ·K · z3+

p30 · y(2·tmsei+asym+5·ldeiPerNuc) · z3 · J · z · L · z ·K · z2,

R = p31 · y(2·tbp1xNil+asym+4·ldeiPerNuc) · z · z · L · z ·K · z3+

p32 · y(2·tbp1xNil+asym+4·ldeiPerNuc) · z3 · J · z · L · z · z,
J = p33 · y(ldeiPerNuc) · J · z + p34 · 1,
K = p35 · y(ldeiPerNuc) ·K · z + p36 · 1,
M = p37 · y(2·(stackingMulti+termAUpenML+MBLHelixPenalty))·

U · z · L · z · U · z · L · z ·N,
N = p38 · y(stackingMulti+termAUpenML+MBLHelixPenalty)·

U · z · L · z ·N + p39 · U,
U = p40 · y(MBLFreeBasePenalty) · U · z + p41 · 1.

To stress the difference of both approaches, we want to consider production f23 = H → H • of grammar
Gsto as one example. Each iteration of this rule produces an additional unpaired nucleotide within a
hairpin loop. Nevertheless, within system (1) its corresponding equation H = p23 ·H · z+p24 ·1 possesses
no variable y since we account for the free energy of the entire hairpin loop assigning an appropriate
averaged energy contribution to production f22. Now, we change perspective and use the grammar itself
to accumulate the contribution giving rise to a factor y(ldehPerNuc+cHairpinPerNuc) each time the hairpin
loop is elongated by the use of production H → H • . Therefore, a realistic behavior of the expected free
energy derived from the resulting model proves the model’s accuracy with respect to loop length.
Again, we can compute suitable values for the free energy parameters used in system (2) by sequence
counting using our biological database; results are given in Table 4 of Section Sm-IV. Proceeding as
before, system (2) leads to a bivariate generating function D̂sto(z, y), where size resp. energies are kept
by variable z resp. y. In fact, we obtain the following results for this alternative free energy model (the
corresponding intermediate results are given in Section Sm-III):

Theorem 4.3. Under the assumption of our dynamic energy model (derived from SSU and LSU rRNAs),
the expected minimum free energy G◦37(S) (in kcal/mol) of a secondary structure S 6= ∅ of size n is asymp-
totically given by

µ̂sto,n := −0.184189537n+ 37.1085737 +O
(

1

n

)
, n→∞.

Theorem 4.4. Under the assumption of our dynamic model (derived from SSU and LSU rRNAs), the
variance of the minimum free energy G◦37(S) of a random secondary structure S 6= ∅ of size n (in kcal2/mol2)
is asymptotically given by

σ̂2
sto,n := 3.963452967n+O (1) , n→∞.

As before, Figure 2 shows a (not so fast) convergence of the asymptotics presented in Theorems 4.3
and 4.4, respectively, towards the respective exact values.
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Figure 2: Plots of the coefficient asymptotics (purple) for the expected free energy G◦37(S) (left) and
the corresponding variance (right) of a secondary structure S 6= ∅ of size n under the assumption of our
dynamic free energy model, respectively, as well as points for the respective exact coefficients (magenta,
obtained from the corresponding generating functions).

5 Discussion

In this section, we want to compare our analytic results to real world data in order to judge their quality.
For this reason, we first associate a “free energy point” {n,G◦37(S)}17 to each secondary structure S 6= ∅
of size n given in our biological database. The set of secondary structures given in our biological database
will be denoted by bDB in the sequel. Furthermore, the subset of secondary structures in bDB having a
size n, with n1 ≤ n ≤ n2, i.e. the set {S ∈ bDB : n1 ≤ |S| ≤ n2}, will be denoted by bDBn1,n2 and the
subset of elements of size n is given by bDBn := bDBn,n.
Additionally, we wanted to derive another set of “average points” {n, µn} from our biological database,
where

µn :=
1

card(bDBn)

∑
S∈bDBn

G◦37(S).

However, due to the fact that for many different structure sizes n in the range of structure sizes given in
this database, card(bDBn) is not large enough (i.e., there are not enough RNA secondary structures S of
size n), these points are not really appropriate “average points”. Therefore, we decided to partition the
range of structure sizes into equally large intervals (of size 25 each) and to derive one “average point” for
each of these intervals. In fact, we computed the set of “average points”

{
n1 + n2−n1

2 , µn1,n2

}
, where

µn1,n2 :=
1

card(bDBn1,n2)

∑
S∈bDBn1,n2

G◦37(S),

for (n2 − n1) + 1 = 25 and n2 mod 25 = 0. Finally, for the sake of completeness, we determined the
corresponding set of “variance points”

{
n1 + n2−n1

2 , σ2
n1,n2

}
, where

σ2
n1,n2

:=

∑
S∈bDBn1,n2

(µn1,n2
−G◦37(S))

2

card(bDBn1,n2
)− 1

.

As a start, we plotted our 1866 “free energy points” against the expected free energies as given in
Theorems 4.1 (blue line) and 4.3 (purple line). The result as well as a linear regression to the points
(green line) is shown in Figure 3.
Considering Figure 3, it seems that both models are realistic but it is not quite clear which should be
preferred. Even if the static model is more close to the linear regression, the dynamic explains better the
sparse points related to large molecules (n > 4000). Besides, the linear regression fits nicely for regions
where we have many samples but fails to generalize to larger sizes. This shows the necessity of a precise
analysis as performed in this paper – a mere inspection of the data at hand is insufficient.
In addition, we observe that the expected free energy G◦37(S) of a secondary structure S 6= ∅ of size n
under the assumption of the dynamic model is significantly larger than under the assumption of the static
one; the difference grows with n. The reason for this observation is due to the difference between our two
energy models: In the static model, destabilizing free energy contributions for certain (special) types of
loops that depend on the number of unpaired bases resp. base pairs in the loop, are added for the whole
structure, whereas in the dynamic model, such destabilizing free energy contributions are added for each

17Note that for each “free energy point”, the corresponding free energy G◦37(S) of secondary structure S is computed
according to Turner’s energy model (and thus neither according to our static energy model nor according to our dynamic
energy model, which were both derived from Turner’s model).
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Figure 3: Plots of the expected free energy G◦37(S) of a secondary structure S 6= ∅ of size n under the
assumption of our static (blue) and dynamic (purple) model, respectively, together with the 1866 points
{n,G◦37(S)} for each secondary structure S 6= ∅ of size n given in our biological database (brown) and a
linear regression for these points (green).

unpaired base resp. base pair in the loop. As a consequence, in the static model, very small loops are
assigned the same free energy as extremely large loops – thus loop length is no source of variation for the
free energy as it should, explaining the smaller variance observed for model one – whereas in the dynamic
model, loops of different lengths are assigned different destabilizing (positive) free energy values. In fact,
in the dynamic model, loops with a larger number of unpaired bases resp. base pairs are assigned larger
destabilizing free energies. Consequently, for each loop with a number of unpaired bases resp. base pairs
that is large enough, the destabilizing free energy for this loop in the dynamic model is greater than
that in the static one. Thus, with increasing n, a secondary structure S 6= ∅ of size n may contain more
loops for which the corresponding destabilizing (positive) free energy in the dynamic model is greater
than the corresponding destabilizing free energy in the static model. Since our database contains many
structures of size ≤ 2000 and fewer of larger sizes, this gives rise to an underestimated contribution for
larger molecules with respect to our static model. For additional evidence on the good quality of our
analytical free energy results, see Figures 4 and 5.

Figure 4: Plots of the expected free energy G◦37(S) of a secondary structure S 6= ∅ of size n under the
assumption of our static (blue) and dynamic (purple) model, respectively, together with the “average
points” obtained from our biological database (brown).

Figure 5: Plots of the variance of the expected free energy G◦37(S) of a secondary structure S 6= ∅ of size
n under the assumption of our static (blue) and dynamic (purple) model, respectively, together with the
“variance points” obtained from our biological database (brown).

To further judge our model’s accuracy and for their further comparison, we use Chebyshev’s inequality
to compute probabilities for the free energy of a random secondary structure S 6= ∅ of size n to differ at
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most by a given value from its expectation. First, we consider the desired results under the assumption
of our static model:

Theorem 5.1. Under the assumption of our static model, we can suppose that at most 100
k2 percent of

free energies G◦37(S) of all secondary structures S 6= ∅ of size n lie outside and that at least
(
100− 100

k2

)
percent of them lie inside the open interval Isto,n(k) :=

(
asto,n(k) kcal/mol, bsto,n(k) kcal/mol

)
, where

asto,n(k) := 39.16513746− 1.59106684k
√
n− 0.24783007n,

bsto,n(k) := 39.16513746 + 1.59106684k
√
n− 0.24783007n.

Proof. Considering all dot-bracket words s ∈ Sn, then according to Chebyshev’s inequality,

Pr[|gsto(s)− µsto,n| ≥ kσsto,n] ≤ 1

k2
.

Thus the probability for the free energy gsto(s) associated with a dot-bracket word s ∈ Sn to lie outside
the open interval

Isto,n(k) := (µsto,n − kσsto,n, µsto,n + kσsto,n)

is less than or equal to 1
k2 . Hence, the probability that the free energy gsto(s) associated with a dot-bracket

word s ∈ Sn lies in this interval is greater than
(
1− 1

k2

)
, as for s ∈ Sn,

Pr[|gsto(s)− µsto,n| < kσsto,n]

= 1− Pr[|gsto(s)− µsto,n| ≥ kσsto,n] > 1− 1

k2
.

Thus, considering all s ∈ Sn, we may assume that at most 100
k2 percent of the free energy values gsto(s)

lie outside and at least
(
100− 100

k2

)
percent of them lie inside the interval Isto,n(k), respectively. Finally,

consider Theorem 4.1 and Theorem 4.2 to get asymptotical values of µsto,n and σsto,n (as n→∞).

Note that formally this must only hold for n→∞, as our theorems only prove asymptotical representa-
tions for µsto,n and σsto,n. However, Figures 3 to 5 provide evidence that even for n ≥ 1000, our formulae
for µsto,n and σsto,n are accurate.
Moreover, further evidence can be given by computing two more sets of “interval endpoints”

{n1 +
n2 − n1

2
, An1,n2

(k) := µn1,n2
− kσn1,n2

} and

{n1 +
n2 − n1

2
, Bn1,n2(k) := µn1,n2 + kσn1,n2},

respectively, where (n2 − n1) + 1 = 25 and n2 mod 25 = 0, and plotting them against the endpoints
asto,n(k) and bsto,n(k) of the open interval Isto,n(k), respectively, as shown in Figure 9 of the supplementary
material.
It should be no surprise that the length of any interval Isto,n(k) grows with increasing value of n. Fur-
thermore, it should be easy to understand why, for a fixed value of n, the length of the intervals Isto,n(k)
grows with increasing k. The fact that the length of the intervals Isto,n(k), for k > 1 and n > 0, grows
with increasing values of both k and n is illustrated by the three-dimensional plots shown in Figure 10 of
the supplementary material. In the same way, we can derive the corresponding results for the dynamic
free energy model. In fact, we immediately obtain:

Theorem 5.2. Under the assumption of our dynamic model, we find out that at most 100
k2 percent of free

energies G◦37(S) of all secondary structures S 6= ∅ of size n lie outside and at least
(
100− 100

k2

)
percent of

them lie inside the open interval Îsto,n(k) :=
(
âsto,n(k) kcal/mol, b̂sto,n(k) kcal/mol

)
, where

âsto,n(k) := 37.1085737− 1.99084228k
√
n− 0.184189537n,

b̂sto,n(k) := 37.1085737 + 1.99084228k
√
n− 0.184189537n.

The corresponding plots for Îsto,n(k) are shown in Figures 11 and 12 of the supplementary material.
Comparing Theorems 5.1 and 5.2, it is easy to see that for fixed values of both n and k, the size of
the interval Îsto,n(k) is always greater than the size of the corresponding interval Isto,n(k), due to the
larger variance present in our dynamic model. Figure 6 shows the relative location of both intervals as a
function of n for different choices of k.
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Figure 6: Plots of the intervals Isto,n(k) (blue) and Îsto,n(k) (purple), k ∈ {2,
√

10,
√

20, 10}.

Figure 7: Plots of the intervals Isto,n(k) for the static model (blue) and Îsto,n(k) for the dynamic model
(purple), for k =

√
20 (left) containing at least 95 percent and k = 10 (right) containing at least 99 percent

of the free energies G◦37(S) of all secondary structures S 6= ∅ of size n, respectively. Also displayed are
the 1866 points {n,G◦37(S)} for each secondary structure S 6= ∅ of size n given in our biological database.

In Figure 7, the intervals Isto,n(k) and Îsto,n(k) are displayed for k ∈ {
√

20, 10}, together with the 1866
“free energy points”. As we can see, for k =

√
20, not all the free energies of the RNA secondary structures

S 6= ∅ of size n given in our biological database lie in the intervals Isto,n(k) and Îsto,n(k), respectively,
but they do for k = 10.
Since both models fit nicely with native data, we can conclude that the underlying stochastic RNA
secondary structure model based on the comprehensive SCFG Gsto behaves realistic with respect to free
energies and – as the free energy of a given secondary structure is (assumed to be) equal to the sum
of the free energies of its substructures – rather likely also with respect to appearance of the different
structural motifs of RNA molecules.

6 Applications

Now, having a model at hand which realistically reflects the secondary structure of an RNA molecule
and its contributions to free energy, it becomes possible to derive a non-uniform weighted unranking
algorithm that generates random RNA secondary structures according to a realistic distribution. In fact,
based on the stochastic model for (SSU and LSU r)RNA secondary structures (given by the SCFG Gsto)
as presented in this work, the weighted unranking approach of [WN] makes it possible to generate high-
quality random RNA secondary structures for a given size n.
Details on the corresponding weighted unranking method are reported elsewhere (see [NS]). However,
Figure 8 shows the result of randomly generating secondary structures according to this approach and
their realistic behaviour with respect to free energy18.

7 Conclusions

In this paper, we have studied a stochastic model for RNA secondary structures trained on a database
of SSU and LSU rRNA secondary structures derived from [WRdP+01] and [WdPWW02]. Based on the
well-known Turner energy model (i.e., the INN-HB model with loop-dependent energy rules [XSB+98,
MSZT99]), we have designed two different free energy models for our stochastic model, making use of
the thermodynamic parameters given in [MSZT99] (which have also been used for version 3.0 of MFOLD
[Zuk03]). For both models, we have computed asymptotics for the expected minimum free energy G◦37(S)
as well as the corresponding variance of a random secondary structure S 6= ∅ of size n. To obtain our
results, we have used the concept of stochastic context-free grammars and languages and the method of
generating functions.

18Note that although both energy models have been proven to be realisitic, due to the more realistic variation of free
energies connected to varying loop length, we suggest to consider the dynamic model for possible applications.
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Figure 8: Interval Îsto,n(
√

20)} (purple), corresponding points {n, ĝsto(s)} (magenta) for each secondary
structure s of size n contained in a large set of randomly generated RNA secondary structures and the
1866 points {n,G◦37(S)} (brown) for each secondary structure S 6= ∅ of size n given in our biological
database.

Even if our grammar was trained only on structural information on native molecules leaving their free
energies unconsidered, enriching our stochastic grammar by energy contributions provides a realistic
model for free energies. Due to the fact that the RNA secondary structure model induced by our SCFG
shows a realistic behaviour (expectation and variance) with respect to minimum free energy and the
free energy of a molecule’s secondary structure is given by the sum of the energy contributions of all
its substructures, it is rather likely that our grammar also shows a realistic picture for all the different
structural motifs of a molecule’s folding. For that reason, this work marks a stepping stone towards the
random generation of RNA secondary structures, and – if a given RNA sequence is also considered – even
a stepping stone towards new randomized RNA secondary structure prediction methods.

Table 1: Analytically obtained asymptotical minimum free energy results for secondary structures S 6= ∅
of size n under the assumption of our static and dynamic model, respectively, derived from any of our
different databases of RNA structures. Results for the dynamic model are written in italics, respectively.

RNA type Expected value Variance

tRNAs −0.3014952027n− 2.645002900 +O (1/n) 3.713067703n+O (1)

−0 .2961916342n − 2 .849523563 +O (1/n) 4 .169485875n +O (1 )

5SrRNAs −0.3927723339n− 0.3031080166 +O (1/n) 3.048656103n+O (1)

−0 .3523192326n + 0 .7588376122 +O (1/n) 4 .649653257n +O (1 )

SSUrRNAs −0.2612433592n+ 37.45755167 +O (1/n) 2.50401664n+O (1)

−0 .1958643118n + 39 .07784261 +O (1/n) 4 .13009101n +O (1 )

LSUrRNAs −0.2267242639n+ 49.45064850 +O (1/n) 2.55752768n+O (1)

−0 .1672224228n + 42 .13229891 +O (1/n) 3 .75135111n +O (1 )

SSU and LSU rRNAs −0.2478300708n+ 39.16513746 +O (1/n) 2.53149370n+O (1)

−0 .1841895371n + 37 .10857372 +O (1/n) 3 .96345297n +O (1 )

Finally, note that the results that have been derived in this paper under the assumption of our static and
dynamic model derived from SSU and LSU rRNA secondary structures, respectively, could be improved
by using a more comprehensive database of SSU and LSU rRNA secondary structures S 6= ∅. It remains
to mention that the models studied in this work, as well as the presented analytical (free energy) results,
should only be used for investigating SSU and LSU rRNA structures; for molecules of other types of RNA
(which may have shorter or larger numbers and/or sizes of the different structural motifs, i.e. different
expected foldings), the corresponding (free energy) results are more or less different.
This can be observed when comparing the previously presented results (expected values and variances
but also probabilities for the grammar rules) to the corresponding results for the four additional sets of
RNA data (see Section 3.3). In fact, these analytically obtained free energy results are all presented in
Table 1. The respective rule probabilities (relative frequencies) for the productions of the SCFG under-
lying our stochastic secondary structure model and the corresponding average free energy contributions
for the energy parameters used in the static and/or dynamic energy model that were obtained from these
databases in order to derive corresponding results, respectively, are tabulated in Tables 5 and 6 of the
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supplementary material. In fact, considering the values given there, many structural and energetical
information can be extracted for each RNA type and similarities and differences between different types
of RNAs can be observed.
Moreover, (Figure 7 and corresponding) Figures 13 to 16 provided in the supplementary material show

plots of the corresponding confidence intervals Isto,n(k) and Îsto,n(k) under the assumption of the static
and the dynamic free energy model for two different suitable values of k, respectively. Note that as
expected, the results for RNA types with longer molecules of highly varying structure which imply a
significantly larger set of possible structural motifs are not as good as the corresponding ones for rather
short and hardly variant types of RNA.
Last but not least, encouraged by one of the referees we implemented a webservice which allows the
users to train the MoNStER-grammar with their own data, derive the corresponding energy parameters
according to Section 4 and to compute asymptotics related to the free energy. This webservice can be
found at http://wwwagak.cs.uni-kl.de/MoNStER.
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Supplementary Material

Sm-I Details On The Used Thermodynamic Model

The thermodynamic model used in this work basically relys on the k-loop decomposition of a secondary
structure S according to Definition 2.3. Moreover, it additionally distinguishes between some special
types of k-loops. Hence, we first have to define all these (special) loop types.
Therefore, let ls(L) denote the number of single-stranded bases in a loop. Hence, the size of a 1- or 2-loop
is defined as ls(L). In fact, if L(i.j) is an interior loop with interior base pair i′.j′ which is accessible
from the exterior base pair i.j of the loop, then its size ls(L) can be written as ls(L) = l1s(L) + l2s(L),
where l1s(L) = i′ − i− 1 and l2s(L) = j − j′ − 1.
Due to this fact, there are some special types of interior loops, depending on the combination of the two
sizes l1s(L) and l2s(L):

Definition Sm-I.1. ([ZMT99]) Let L(i.j) be an interior loop of size ls(L) = l1s(L) + l2s(L).

• If l1s(L) = l2s(L), the loop is called symmetric; otherwise, it is asymmetric, or lopsided.

• The asymmetry of interior loop L, a(L), is defined by:

a(L) = |l1s(L)− l2s(L)|.

• If l1s(L) = 1 and l2s(L) = n or l1s(L) = n and l2s(L) = 1, n > 2, then the interior loop L is called a
“Grossly Asymmetric Interior Loop” (GAIL).

Our thermodynamic model distinguishes between the following (special) types of loops:

• hairpin loops of size 3, called triloops,

• hairpin loops of size 4, called tetraloops,

• hairpin loops of size > 4,

• stacked pairs,

• bulge loops of size 1, called single bulges,

• bulge loops of size > 1,

• 1× 1 interior loops, called single mismatches,

• 2× 2 interior loops, called tandem mismatches,

• 1× 2 (resp. 2× 1) interior loops,

• non-grossly asymmetric interior loops of size > 4,

• grossly asymmetric interior loops (GAILs),

• multiloops and

• exterior loops.

In particular, for hairpin loops, the thermodynamic parameters and free energy rules include a length-
dependent loop destabilizing free energy and a terminal mismatch stacking energy (for loops of size ≥ 4)
resp. the terminal AU/GU penalty (for loops of size 3). Additionally, a GGG loop bonus (applies only to
GU closed hairpins in which a 5′ closing G is preceeded by two G residues) and a penalty term for poly-C
hairpin loops (i.e. for hairpin loops in which all unpaired nucleotides are C), as well as a tetraloop bonus
(for hairpin loops of size 4) are included.
For bulge loops, a length-dependent loop destabilizing free energy, as well as the terminal AU/GU penalty
for both the interior and exterior base pair (for loops of size > 1 only) are included in the model. For
single bulges and for stacked pairs, a stacking energy for the stacking interaction of the interior and
exterior base pair is added.
Small symmetric interior loops and almost symmetric interior loops, particularly 1 × 1, 2 × 2 and 1 × 2
interior loops are treated in a special way, since for these loops, individual sets of free energy values
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are consulted that contain values for every possible sequence variation. For all other interior loops, the
thermodynamic parameters include a length-dependent loop destabilizing free energy and a free energy
contribution that penalizes asymmetry in the loop. Additionally, a terminal mismatch stacking energy
(for loops of size > 4 that are no GAIL) resp. two free energies associated with the terminal base pairs
of the two helices in which the loop ends (for GAILs) is added to the stability of the loop.
Finally, for multi- and exterior loops, the terminal AU/GU penalty and a free energy contribution for
the stacking interaction of a base pair with (0, 1 or 2) single-stranded bases adjacent to that base pair
are explicitly applied to all the terminal base pairs of the helices that are radiating out from this loop19.
Additionally, for multiloops, a destabilizing initiation free energy is added, which depends on the number
of single-stranded bases and on the number of base pairs accessible from the closing base pair of the loop.
Note that in this model, the terminal AU/GU penalty term for a terminal AU or GU base pair at the
end of a helix is added to the free energy of a given secondary structure S along with the free energy of
the loop L(i.j) closed by a base pair i.j ∈ S in which the helix terminates. This means that the terminal
AU/GU penalty, if necessary, is formally assigned the loop L(i.j) closed by the pair i.j ∈ S, although it
really belongs to the helix in which the loop ends.
As the change of the Gibbs free energy G in the chemical process of folding the RNA molecule depends on
the temperature and the thermodynamic parameters used here are all for 37℃, we use G◦37(S) to denote
the free energy of a secondary structure S at 37℃.
Finally, in this model, the free energy G◦37(S) of a secondary structure S is assumed to be given by the
sum of the free energies of all its substructures, formally

G◦37(S) = G◦37(Le) +
∑

i.j∈S
G◦37(L(i.j)).

Sm-II Generating Functions

In this section, we will recall some fundamental definitions and methods concerning generating functions.
The basic definitions are given as follows:

Definition Sm-II.1. ([FS09]) A combinatorial class, or simply a class, is a finite or denumerable set on
which a size function is defined, satisfying the following conditions:

1. the size of an element is a nonnegative integer;

2. the number of elements of any given size is finite.

In the sequel, we will use the same notations as in [FS09]. This means that if A is a class, the size of an
element a ∈ A is denoted by |a| and given a class A, we consistently let An be the set of objects in A
having size n.

Definition Sm-II.2. ([FS09]) The counting sequence of a combinatorial class is the sequence of integers
(an)n≥0 where an = card(An) is the number of objects in class A that have size n.

Definition Sm-II.3. ([FS09]) The ordinary generating function (OGF) of a sequence (an)n≥0 is the
formal power series

A(z) =
∑∞

n=0
anz

n.

The ordinary generating function (OGF) of a combinatorial class A is the generating function of the
numbers an = card(An). Equivalently, the OGF of class A admits the combinatorial form

A(z) =
∑

a∈A
z|a|.

It is also said that the variable z marks size in the generating function.
By [zn]A(z), we denote the operation of extracting the coefficient of zn in the formal power series
A(z) =

∑
n≥0 anz

n, so that

[zn]
(∑

n≥0
anz

n
)

= an.

Note that if the elements an, n ≥ 0, of a sequence (an)n≥0 are probabilities, then the corresponding
generating function is called probabilitiy generating function (PGF), see Definition 3.2.

19Note that if i.j and j + 2.l are two base pairs, then rj+1 can interact with both of them. In this case, the stacking is
assigned to only one of the two base pairs, whichever has a lower free energy (usually the 3′ stack). In fact, the sum of all
the free energy contributions for stacking of single-stranded bases to the terminal base pairs has to be minimized.
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Sm-II.1 Computing Generating Functions

A common way to compute a so-called closed form of a generating function A(z) is to model the com-
binatorial class A of objects as context-free language LA containing exactly all the (encodings of the)
elements in A. Then, we can construct an unambiguous context-free grammar GA = (IA,ΣA, RA, S)
which generates exactly the language LA. Afterwards, we can translate this grammar GA into a system
of equations, as proposed by Chomsky and Schützenberger [CS63], in order to derive a generating func-
tion.
It should be mentioned that translating the grammar GA into a system of equations means that the
production rules contained in the rule set RA are translated into a system of equations. This system
then has to be solved for the variable S corresponding to the start symbol (axiom) of GA to obtain the
desired closed form. More precisely, we first have to eliminate each variable X corresponding to the
symbol X ∈ IA \ {S} in this system of equations to obtain a polynomial equation in the variables z
and S only and this polynomial equation must then be solved for the variable S. Note that there is
a difference between approximating solutions to polynomial equations and finding exact solutions. In
fact, for polynomial equations up to a degree of 4, we can compute exact solutions. But for polynomial
equations of degree 5 or greater, we can only compute approximate solutions20.

Sm-II.2 Computing Coefficient Asymptotics

To compute an asymptotic for the nth coefficient of a generating function A(z) (for n → ∞), we can
use the methods of singularity analysis. To be able to use this method, we now want to recall some
definitions and further results. First, it has to be mentioned that in the sequel, we will no longer consider
generating functions as formal power series, but as analytic functions that are represented as power series.
For details, see for example [FS09]. Then, the functions we consider are defined in certain regions of the
complex plane C.

Definition Sm-II.4. ([FS09]) A function f(z) defined over a region Ω ⊂ C is analytic at a point z0 ∈ Ω
if, for z in some open disk centred at z0 and contained in Ω, it is representable by a convergent power
series expansion

f(z) =
∑

n≥0
cn(z − z0)n.

A function is analytic in a region Ω iff it is analytic at every point of Ω.

In addition to the term analytic, we want to introduce the term regular. Although these terms have
different meanings, in our context we may use them interchangeably.

Definition Sm-II.5. ([Hof95]) If f(z) is analytic and single-valued throughout Ω ⊂ C it is said to be
regular in Ω (or holomorphic). The function is regular at a point if it is regular in some neighborhood of
the point. Such a point is called a regular point of f(z). A point which is not regular is singular.

Singular points are often called singularities and they are essential to coefficient asymptotics. There are
different types of singularities:

Definition Sm-II.6. (Classification of Singularities [Hof95]) If z0 is a singular point of f(z), and the
function is regular in a “punctured disk” 0 < |z− z0| < R ≤ ∞, we say it has an isolated singularity. An
isolated singularity can be of the following types:

• removable singularity, when limz→z0 f(z) exists.

• pole, in case limz→z0 f(z) =∞ holds (we say it exists as an improper limit).

• essential singularity, when limz→z0 f(z) does not exist, not even improperly.

A branch point is a point where branches of a multivalued function coincide (called by some authors,
when removable, weak singularity).
An algebraic singularity is either a pole or a branch point.

We are only interested in a subset of all the singularites of a generating function, called dominant singu-
larities.

20There is one exception: Klein’s method of solving polynomial equations of degree 5, which can be extended to solve
polynomial equations of degree 6. But for higher order polynomials, only approximate solutions are possible.
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Definition Sm-II.7. ([FS09]) For any function f(z) that is analytic at a point z0, the disk with the
property that the series expansion about the point z0 representing f(z) is convergent for z inside the
disk and divergent for z outside the disk is called the disk of convergence and its radius is the radius of
convergence of f(z) at z = z0.
Singularities of a function f(z) analytic at z0 = 0 which lie on the boundary of the disk of convergence
of f(z) at z0 = 0 are called dominant singularities.

Theorem Sm-II.1. (Boundary singularities [FS09]) A function f(z) analytic at the origin, whose ex-
pansion at the origin has a finite radius of convergence R, necessarily has a singularity on the boundary
of its disk of convergence, |z| = R.

The following theorem can help us to determine the dominant singularities of a given generating function.

Theorem Sm-II.2. (Pringsheim’s Theorem [FS09]) If f(z) is representable at the origin by a series
expansion that has nonnegative coefficients and radius of convergence R, then the point z = R is a
singularity of f(z).

In this work, we will use the following theorem to compute an asymptotical representation for the nth
coefficient of a given generating function (for n→∞):

Theorem Sm-II.3. (DARBOUX [KW89]) Let v(z) be analytic in some disk |z| < 1 + η, and suppose
that in a neighborhood of z = 1 it has the expansion v(z) =

∑
vj(1 − z)j. Then for every β and every

integer m ≥ 0 we have

[zn]{(1− z)βv(z)}

= [zn]
{∑m

j=0
vj(1− z)β+j

}
+O(n−m−β−2)

=
∑m

j=0
vj

(
n− β − j − 1

n

)
+O(n−m−β−2),

as n→∞.

Note that the larger we choose the parameterm for the determination of a coefficient asymptotic according
to Darboux’s theorem, the more exact the resulting coefficient asymptotic gets. In fact, by choosing
m→∞, the resulting coefficient asymptotic is equal to the exact coefficient.

Sm-III Free Energy Analysis – Methods and Proofs

In this section, we prove our analytical (free energy) results by giving a detailled description on how
we calculated the expected free energy G◦37(S) and the corresponding variance of a random secondary
structure S 6= ∅ of size n under the assumption of our static free energy model derived from our database of
SSU and LSU rRNA secondary structure data. Furthermore, we present the corresponding intermediate
results when considering our dynamic free energy model.

Sm-III.1 Computation of the Expected Free Energy

First, we want to describe how to derive the expected free energy G◦37(S) of a random secondary structure
S 6= ∅ of size n under the assumption of our static stochastic model.
According to [CS63], we can translate the rule set RG (given in Definition 4.1) of the SCFG Gsto into
the following system of equations for a probability generating function associated to L(Gsto):

S = p1 · T ·A · C,
T = p2 · T ·A · C + p3 · C,
C = p4 · C · z + p5 · 1,
A = p6 · z · L · z,
L = p7 · z · L · z + p8 ·M + p9 · P + p10 ·Q+ p11 ·R+

p12 · F + p13 ·G,
G = p14 · z · L · z · z + p15 · z · L · z ·B · z2+

p16 · z · z · L · z + p17 · z2 ·B · z · L · z,
B = p18 ·B · z + p19 · 1,
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F = p20 · z3 + p21 · z4 + p22 · z5 ·H,
H = p23 ·H · z + p24 · 1, (3)

P = p25 · z · z · L · z · z + p26 · z · z · L · z · z2+

p27 · z2 · z · L · z · z + p28 · z2 · z · L · z · z2,

Q = p29 · z2 · z · L · z ·K · z3+

p30 · z3 · J · z · L · z ·K · z2,

R = p31 · z · z · L · z ·K · z3 + p32 · z3 · J · z · L · z · z,
J = p33 · J · z + p34 · 1,
K = p35 ·K · z + p36 · 1,
M = p37 · U · z · L · z · U · z · L · z ·N,
N = p38 · U · z · L · z ·N + p39 · U,
U = p40 · U · z + p41 · 1.

As the SCFG Gsto is consistent, by solving this system for the axiom S of the grammar Gsto, we obtain
a closed form of the probability generating function

Ssto(z) =
∑

s∈S
Pr[s] · z|s|

=
∑

n≥0

(∑
s∈Sn

Pr[s]
)
· zn

=
∑

n≥0
ssto,n · zn.

Here, Pr[s] is the probability of the dot-bracket word s ∈ S under the assumption of the probability
distribution on the words in the combinatorial class S which is implied by the SCFG Gsto. Hence, ssto,n

is the probability that a dot-bracket representation s of length n is generated by the SCFG Gsto, i.e. the
probability that a word s ∈ S has length n.
To be able to compute the desired expected free energy, we have to incorporate free energy values into
system (3). Therefore, we first have to recall that each factor z = z1 in this system represents a word of
length 1 over ΣG = {(((, ))), •}, such that in the PGF Ssto(z), the variable z marks length. In addition to
that, we now want to use a second variable y marking free energies. The resulting generating function is
a so-called bivariate generating function. A formal definition based on [SF01] is given as follows:

Definition Sm-III.1. Given a doubly indexed sequence (ank)n∈N0,k∈K , where K ⊂ R is enumerable21,
the function

A(z, u) =
∑

n∈N0

∑
k∈K

anku
kzn

is called the bivariate generating function (BGF) of the sequence. We use the notation [ukzn]A(z, u) to
refer to ank; [zn]A(z, u) to refer to

∑
k∈K anku

k; and [uk]A(z, u) to refer to
∑
n∈N0

ankz
n.

Hence, let gsto(s) denote the free energy associated with the dot-bracket representation s ∈ S under the
assumption of the stochastic model under consideration and let Ksto be an enumerable22 subset of R
with the property that for each s ∈ S, gsto(s) ∈ Ksto. Furthermore, let X be a random variable (for the
length of an element s ∈ S) that takes on values in N, and let Y be a random variable (for the free energy
gsto(s) associated with a dot-bracket representation s ∈ S) that takes on values in Ksto.
We thus aim at determining a closed form of the bivariate generating function

Dsto(z, y) =
∑

n∈N

∑
k∈Ksto

Pr[Y = k and X = n] · ykzn,

where [ykzn]Dsto(z, y) = Pr[Y = k and X = n] is the probability that a dot-bracket representation
s ∈ S has length n and an associated free energy of k kcal/mol. The combinatorial form of this bivariate
generating function could be written as

Dsto(z, y) =
∑

s∈S

(
Pr[s] · ygsto(s)

)
· z|s|.

21For K = N0, we obtain the definition given in [SF01].
22Note that Ksto ⊂ R is enumerable, as the free energies are given by kcal/mol-values with a finite number of decimal

places. Thus, by considering a suitable unit which is different to kcal/mol, we obtain a subset of N.

26



Once we have constructed the bivariate generating function Dsto(z, y), the desired expected free energy
G◦37(S) of a secondary structure S 6= ∅ under the assumption of the stochastic model under consideration
can immediately be computed, as it is then given by

[zn] ∂∂yDsto(z, y)
∣∣
y=1

[zn]Dsto(z, y)
∣∣
y=1

.

Note that by using a consistent SCFG to obtain the corresponding bivariate generating function, the
resulting expected value is in fact a conditional expected value, i.e. the expected value with respect to a
conditional probability distribution. In particular, by considering Gsto generating exactly all the elements
in S, we aim for the expected free energy G◦37(S) of a secondary structure S 6= ∅ under the condition that
S has size n. We have:

Esto(z) :=
∂

∂y
Dsto(z, y)

∣∣
y=1

=
∂

∂y

(∑
n∈N

∑
k∈Ksto

Pr[Y = k and X = n] · ykzn
)∣∣∣

y=1

=
∑
n∈N

( ∑
k∈Ksto

∂

∂y
Pr[Y = k and X = n] · yk

)
· zn
∣∣∣
y=1

=
∑
n∈N

( ∑
k∈Ksto

k · Pr[Y = k and X = n]

)
· zn.

Consequently,

[zn]
∂

∂y
Dsto(z)

∣∣
y=1

=
∑

k∈Ksto

k · Pr[Y = k and X = n].

But obviously, for n fix Pr[Y = k and X = n] does not provide a probability measure. However, for
Pr[X = n] 6= 0, switching to the conditional probability

Pr[Y = k | X = n] =
Pr[Y = k and X = n]

Pr[X = n]

yields a probability measure on the elements of size n. Hence, we obviously must divide [zn] ∂∂uA(z, u)
∣∣
u=1

by Pr[X = n] to obtain the desired expected value.
Since X is a random variable for the length of an element s ∈ S, Pr[X = n] is the probability that an
element s ∈ S has length n and is obviously given by the nth coefficient of the PGF for random variable
X, which is given by

Ssto(z) = Dsto(z, y)
∣∣
y=1

=
∑

n∈N
Pr[X = n] · zn.

Thus, we have to divide the nth coefficient of the generating function Esto(z) by the nth coefficient of
Ssto(z), as this yields

[zn]Esto(z)

[zn]Ssto(z)
=

∑
k∈Ksto

k · Pr[Y = k and X = n]

Pr[X = n]

=
∑

k∈Ksto

k · Pr[Y = k and X = n]

Pr[X = n]

=
∑

k∈Ksto

k · Pr[Y = k | X = n]

= E [gsto(s) | |s| = n] ,

which is the expected free energy associated with a dot-bracket representation s ∈ S, under the condition
that this dot-bracket word s has length n (conditional expectation).
According to the previous discussion, we now have to modify system (3) by multiplying some terms with
free energy values, such that solving it for the variable S yields a closed form of the desired bivariate
generating function Duni(z, y). In fact, we have to decide which free energy values will be used for the
free energy function gsto and how they should be incorporated into system (3).
According to our thermodynamic model, most of the contributions to the free energy of a secondary
structure S are sequence-dependent. But for a given dot-bracket representation s of a secondary structure
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S, we do not know the corresponding RNA sequence R. Therefore, we have to use fixed, sequence-
independent values for the different contributions. Similarly, we want to use fixed values for the different
length-dependent free energy contributions. Hence, we decided to use average values (derived from a
database of known RNA structures) for all the different free energy contributions that are considered in
the used thermodynamic model.
For each of the different structures that are distinguished, all the average values of the free energy contri-
butions that are considered to compute the free energy of this structure according to the thermodynamic
model have to be summed up in the exponent of y each time such a structure is generated by grammar
Gsto. This immediately yields system (1).
We can easily calculate suitable average values for the parameters used in system (1) by sequence counting
using our biological database. Note that since according to our thermodynamical model, there are no
free energy parameters for non-canonical base pairs, those must be treated as mismatches. The resulting
average values are given in Table 3 shown in Section Sm-IV.
Using the rational approximations23 given in the fourth column of Table 3, we can solve system (1) for
the variable S to obtain a closed form of the desired bivariate generating function Dsto(z, y) and then
proceed the way described before.
In order to compute precise asymptotics for [zn]Esto(z) and [zn]Ssto(z), respectively, we make use of
Darboux’s theorem as given above. This way, we obtain:

Lemma Sm-III.1. Under the assumption of our stochastic secondary structure model (derived from SSU
and LSU rRNAs), the expected number of secondary structures S 6= ∅ of size n is asymptotically given by

1.0001297−n
(

26.96760121

n3/2
− 102833.1842

n5/2
+O

(
n−

7
2

))
,

n→∞.

Lemma Sm-III.2. Under the assumption of our static free energy model (derived from SSU and LSU
rRNAs), the first factorial moment for the free energy G◦37(S) of a random secondary structure S 6= ∅ of
size n is asymptotically given by

1.0001297−n
(
−6.68338252√

n
+

26541.34513

n3/2
+O

(
n−

5
2

))
,

n→∞.

Afterwards, dividing the resulting asymptotics one by the other and computing the series expansion of
this fraction about n → ∞ yields an asymptotic for the expected free energy of a secondary structure
S 6= ∅ of size n under the assumption of the model under consideration. A floating point approximation
of this asymptotic is given in Theorem 4.1.

Sm-III.2 Computing the Variance of Free Energies

Now, we describe how to compute the variance σ2
sto,n of the free energy G◦37(S) of a random secondary

structure S 6= ∅ of size n under the assumption of the stochastic model under consideration.
To reach this goal, we first consider the second partial derivate of the bivariate generating function
Dsto(z, y) with respect to the variable y at the point y = 1. This generating function is given by

Fsto(z) :=
∂2

∂y2
Dsto(z, y)

∣∣
y=1

=
∂2

∂y2

(∑
n∈N

∑
k∈Ksto

Pr[Y = k and X = n] · ykzn
)∣∣∣

y=1

=
∑
n∈N

( ∑
k∈Ksto

∂2

∂y2
Pr[Y = k and X = n] · yk

)
· zn
∣∣∣
y=1

=
∑
n∈N

( ∑
k∈Ksto

k · (k − 1) · Pr[Y = k and X = n]

)
· zn

=
∑
n∈N

( ∑
k∈Ksto

(k2 − k) · Pr[Y = k and X = n]

)
· zn.

23Note that we have used the rational approximations instead of the computed floating point values to avoid numerical
imprecisions.
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As

[zn]Fsto(z)

[zn]Ssto(z)
=

∑
k∈Ksto

(k2 − k) · Pr[Y = k and X = n]

Pr[X = n]

=
∑

k∈Ksto

(k2 − k) · Pr[Y = k and X = n]

Pr[X = n]

=
∑

k∈Ksto

k2 · Pr[Y = k and X = n]

Pr[X = n]
−

∑
k∈Ksto

k · Pr[Y = k and X = n]

Pr[X = n]

=
∑

k∈Ksto

k2 · Pr[Y = k | X = n]−

∑
k∈Ksto

k · Pr[Y = k | X = n]

= E
[
gsto(s)2 | |s| = n

]
− E [gsto(s) | |s| = n]

holds, the desired variance σ2
sto,n is given by

σ2
sto,n =

[zn] ∂
2

∂y2Dsto(z, y)
∣∣
y=1

[zn]Dsto(z, y)
∣∣
y=1

+
[zn] ∂∂yDsto(z, y)

∣∣
y=1

[zn]Dsto(z, y)
∣∣
y=1

−

(
[zn] ∂∂yDsto(z, y)

∣∣
y=1

[zn]Dsto(z, y)
∣∣
y=1

)2

=
[zn]Fsto(z)

[zn]Ssto(z)
+

[zn]Esto(z)

[zn]Ssto(z)
−
(

[zn]Esto(z)

[zn]Ssto(z)

)2

=
[zn]Fsto(z)

[zn]Ssto(z)
+ µsto,n − µ2

sto,n

= E
[
gsto(s)2 | |s| = n

]
− E [gsto(s) | |s| = n] +

E [gsto(s) | |s| = n]− (E [gsto(s) | |s| = n])
2

= E
[
gsto(s)2 | |s| = n

]
− (E [gsto(s) | |s| = n])

2

= Var [gsto(s) | |s| = n] ,

which is the variance of the free energy gsto(s) associated with a random secondary structure s conditioned
on length n.
By applying Darboux’s theorem to the second partial derivative Fsto(z) and afterwards computing a
floating point approximation of the series expansion of the resulting asymptotic about n→∞, we obtain
the following result:

Lemma Sm-III.3. Under the assumption of our static free energy model (derived from SSU and LSU
rRNAs), the second factorial moment for the free energy G◦37(S) of a random secondary structure S 6= ∅
of size n is asymptotically given by

1.0001297−n
(

1.65634316
√
n− 6764.54734√

n
+O

(
n−

3
2

))
,

n→∞.

Using the determined asymptotics for [zn]Ssto(z), [zn]Esto(z) and [zn]Fsto(z), we immediately obtain the
desired asymptotic for the variance σ2

sto,n. A floating point approximation of this asymptotic is given in
Theorem 4.2.

Sm-III.3 Results for the Dynamic Model

Under the assumption of the alternative dynamic energy model, we use the bivariate generating function
D̂sto(z, y) (instead of Dsto(z, y) which was used for the static model) to derive to desired results.
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Obviously, the asymptotic for the expected number of secondary structures S 6= ∅ of size n does not
depend on the free energy function ĝsto(s) used. Accordingly, the asymptotic given in Lemma Sm-III.1
also holds for the dynamic free energy model and the remaining needed asymptotics can be derived in
the same way as for the static free energy model. Thus, we obtain the following results:

Lemma Sm-III.4. Under the assumption of our dynamic free energy model (derived from SSU and LSU
rRNAs), the first factorial moment for the free energy G◦37(S) of a random secondary structure S 6= ∅ of
size n is asymptotically given by

1.0001297−n
(
−4.96714998√

n
+

19941.5258

n3/2
+O

(
n−

5
2

))
,

n→∞.

Lemma Sm-III.5. Under the assumption of our dynamic free energy model (derived from SSU and LSU
rRNAs), the second factorial moment for the free energy G◦37(S) of a random secondary structure S 6= ∅
of size n is asymptotically given by

1.0001297−n
(

0.91489706
√
n− 3745.49229√

n
+O

(
n−

3
2

))
,

n→∞.

Using the three determined asymptotics for [zn]D̂sto(z, y)
∣∣
y=1

, [zn] ∂∂y D̂sto(z, y)
∣∣
y=1

and [zn] ∂
2

∂y2 D̂sto(z, y)
∣∣
y=1

,

we immediately obtain the desired results for the expected free energy and the variance of the free energy.
Floating point approximations of their series expansions about n→∞ are given in Theorems 4.3 and 4.4.
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Sm-IV Tables and Figures

Table 2: The probabilities (relative frequencies) for the production rules of the SCFG Gsto, obtained by
training it using our biological database.

Rule f Probability pf Rule f Probability pf

f1 p1 := 1 f2 p2 := 5543
6476

f3 p3 := 933
6476 f4 p4 := 74489

81898

f5 p5 := 7409
81898 f6 p6 := 1

f7 p7 := 605069
792975 f8 p8 := 31912

792975

f9 p9 := 4912
264325 f10 p10 := 5821

158595

f11 p11 := 1893
264325 f12 p12 := 2723

31719

f13 p13 := 38399
792975 f14 p14 := 11667

38399

f15 p15 := 7235
38399 f16 p16 := 11831

38399

f17 p17 := 7666
38399 f18 p18 := 7781

12748

f19 p19 := 4967
12748 f20 p20 := 3912

68075

f21 p21 := 23208
68075 f22 p22 := 8191

13615

f23 p23 := 32509
40700 f24 p24 := 8191

40700

f25 p25 := 533
4912 f26 p26 := 1053

4912

f27 p27 := 2963
14736 f28 p28 := 7015

14736

f29 p29 := 4986
29105 f30 p30 := 24119

29105

f31 p31 := 2357
5679 f32 p32 := 3322

5679

f33 p33 := 57179
84620 f34 p34 := 27441

84620

f35 p35 := 37994
53725 f36 p36 := 15731

53725

f37 p37 := 1 f38 p38 := 23211
55123

f39 p39 := 31912
55123 f40 p40 := 172939

212588

f41 p41 := 39649
212588
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Table 3: Averaged contributions used in the static free energy
model for the stochastic model for RNA secondary structures.

Floating point RationalLoop type Parameter
value approximation

Hairpin loops ldeh 5.81825 146777
25227

tmseh −1.32252 − 44266
33471

GGGLoopBonus −0.0117962 − 653
55357

cHairpinOf3 0.00787522 154
19555

cHairpin 0.000751223 31
41266

termAUpenHL 0.30248 1183
3911

tetra −1.39906 − 38596
27587

Stacked pairs se −2.14328 − 57007
26598

Bulge loops seBulge −2.15362 − 82363
38244

ldeb 3.57223 220453
61713

termAUpenBL 0.240451 3582
14897

Interior loops ile1x1 0.88689 62075
69991

ile2x2 0.858963 29197
33991

ile1x2 3.20486 98181
30635

ldei 2.25941 42321
18731

asym 0.856416 9931
11596

tmsei −0.0884185 − 2953
33398

tbp1xNil 0.339704 551
1622

Multiloops MBLinitiation 4.89098 749107
153161

stackingMulti −1.10953 − 24848
22395

termAUpenML 0.192775 7183
37261

Exterior loops stackingExterior −1.04144 − 27470
26377

termAUpenEL 0.316206 8191
25904
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Table 4: Averaged contributions used in the dynamic free energy
model for the stochastic model for RNA secondary structures.

Floating point RationalLoop type Parameter
value approximation

Hairpin loops ldehPerNuc 1.07399 31426
29261

tmseh −1.32252 − 44266
33471

GGGLoopBonus −0.0117962 − 653
55357

cHairpinOf3 0.00787522 154
19555

cHairpinPerNuc 0.000182974 4
21861

termAUpenHL 0.30248 1183
3911

tetra −1.39906 − 38596
27587

Stacked pairs se −2.14328 − 57007
26598

Bulge loops seBulge −2.15362 − 82363
38244

ldebPerNuc 2.78351 53179
19105

termAUpenBL 0.240451 3582
14897

Interior loops ile1x1 0.8869 62075
69991

ile2x2 0.858963 29197
33991

ile1x2 3.20486 98181
30635

ldeiPerNuc 0.30055 9788
32567

asym 0.856416 9931
11596

tmsei −0.0884185 − 2953
33398

tbp1xNil 0.339704 551
1622

Multiloops MBLOffset 3.4 17
5

MBLFreeBasePenalty 0 0

MBLHelixPenalty 0.4 2
5

stackingMulti −1.10953 − 24848
22395

termAUpenML 0.192775 7183
37261

Exterior loops stackingExterior −1.04144 − 27470
26377

termAUpenEL 0.316206 8191
25904
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Table 5: Floating point approximations of the probabilities (relative frequencies) for
the production rules of the SCFG Gsto (rounded to five decimal places).

Probability SSU and LSU

pi for fi
tRNAs 5S rRNAs SSU rRNAs LSU rRNAs

rRNAs

p1 1.00000 1.00000 1.00000 1.00000 1.00000

p2 0.00185 0.00000 0.85703 0.85327 0.85593

p3 0.99815 1.00000 0.14297 0.14673 0.14407

p4 0.50807 0.41631 0.88637 0.93924 0.90953

p5 0.49193 0.58369 0.11363 0.06076 0.09047

p6 1.00000 1.00000 1.00000 1.00000 1.00000

p7 0.79898 0.78648 0.76554 0.75885 0.76304

p8 0.04832 0.02794 0.04003 0.04060 0.04024

p9 0.00750 0.00028 0.01910 0.01772 0.01858

p10 0.00004 0.05587 0.03471 0.04003 0.03670

p11 0.00000 0.00002 0.00650 0.00827 0.00716

p12 0.14512 0.05587 0.07938 0.09666 0.08585

p13 0.00004 0.07354 0.05474 0.03788 0.04843

p14 0.00000 0.39077 0.29594 0.32290 0.30383

p15 0.00000 0.38254 0.18003 0.20866 0.18842

p16 1.00000 0.22346 0.31951 0.28058 0.30811

p17 0.00000 0.00323 0.20452 0.18786 0.19964

p18 0.00000 0.08508 0.67016 0.32311 0.61037

p19 0.00000 0.91492 0.32984 0.67689 0.38963

p20 0.00000 0.10372 0.06499 0.04715 0.05747

p21 0.00015 0.37577 0.40745 0.24963 0.34092

p22 0.99985 0.52051 0.52756 0.70322 0.60161

p23 0.72677 0.88013 0.79027 0.80679 0.79875

p24 0.27323 0.11987 0.20973 0.19321 0.20125

p25 0.94328 0.69230 0.01815 0.27119 0.10851

p26 0.00000 0.30770 0.18947 0.25922 0.21437

p27 0.00000 0.00000 0.20509 0.19384 0.20107

p28 0.05672 0.00000 0.58729 0.27575 0.47605

p29 0.00000 0.00000 0.13630 0.22202 0.17131

p30 1.00000 1.00000 0.86370 0.77798 0.82869

p31 0.00000 1.00000 0.27535 0.59862 0.41504

p32 0.00000 0.00000 0.72465 0.40138 0.58496

p33 0.92593 0.63784 0.63188 0.72983 0.67572

p34 0.07407 0.36216 0.36812 0.27017 0.32428

p35 0.96000 0.66927 0.69266 0.72484 0.70719

p36 0.04000 0.33073 0.30734 0.27516 0.29281

p37 1.00000 1.00000 1.00000 1.00000 1.00000

p38 0.50000 0.00000 0.34303 0.51585 0.42108

p39 0.50000 1.00000 0.65697 0.48415 0.57892

p40 0.69821 0.72426 0.81335 0.81370 0.81349

p41 0.30179 0.27574 0.18665 0.18630 0.18651
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Table 6: Averaged contributions used in the static and/or dynamic free energy model for
the stochastic model for RNA secondary structures.

SSU and LSUParameter tRNAs 5S rRNAs SSU rRNAs LSU rRNAs
rRNAs

ldeh 5.98406 6.19129 5.8122 5.82655 5.81825

ldehPerNuc 0.794125 1.00921 1.11209 1.02171 1.07399

tmseh −1.1645 −1.09879 −1.3771 −1.24903 −1.32252

GGGLoopBonus −0.00237471 −0.00170279 −0.00290532 −0.0239955 −0.0117962

cHairpinOf3 unknown 0 0.00711215 0.00931953 0.00787522

cHairpin 0 0 0.000312356 0.00134211 0.000751223

cHairpinPerNuc 0 0 0.0000738789 0.000329859 0.000182974

termAUpenHL unknown 0.0265152 0.329621 0.251109 0.30248

tetra 0 −1.89334 −1.50224 −1.16806 −1.39906

se −2.39677 −2.29813 −2.11829 −2.18403 −2.14328

seBulge −2.45 −2.12372 −2.09075 −2.30828 −2.15362

ldeb 3.8 3.41366 3.61455 3.47012 3.57223

ldebPerNuc 3.8 2.83385 2.7694 2.81756 2.78351

termAUpenBL unknown 0.0201056 0.230861 0.262892 0.240451

ile1x1 0.669725 1.02882 0.786472 1.12073 0.8869

ile2x2 0.93 1.025 0.880492 0.776361 0.858963

ile1x2 unknown 3.11818 2.98851 3.54455 3.20486

ldei 4.05005 2.40294 2.23471 2.29463 2.25941

ldeiPerNuc 0.097602 0.26903 0.302712 0.297467 0.30055

asym 3.0 0.393776 0.76318 0.989365 0.856416

tmsei 0.35 −0.209509 −0.0876916 −0.0894717 −0.0884185

tbp1xNil unknown 0.0233333 0.415896 0.239564 0.339704

MBLinitiation 5.0 4.6 4.80892 5.02615 4.89098

MBLOffset 3.4 3.4 3.4 3.4 3.4

MBLFreeBasePenalty 0 0 0 0 0

MBLHelixPenalty 0.4 0.4 0.4 0.4 0.4

stackingMulti −0.689972 −1.11179 −1.11424 −1.10281 −1.10953

termAUpenML 0.227015 0.0823013 0.201926 0.179714 0.192775

stackingExterior −1.33138 −0.712693 −1.04677 −1.02861 −1.04144

termAUpenEL 0.113982 0.249613 0.318013 0.311859 0.316206

35



Figure 9: Plots of the endpoints asto,n(k) (orange line) and bsto,n(k) (green line) of the open intervals
Isto,n(k), for k =

√
20 (left) and k = 10 (right) containing at least 95 percent and at least 99 percent of the

free energies G◦37(S) of all secondary structures S 6= ∅ of size n under the assumption of our static model,
respectively, together with the corresponding “interval endpoints” {n1 + n2−n1

2 , An1,n2
(k)} (orange) and

{n1 + n2−n1

2 , Bn1,n2
(k)} (green) obtained from our biological database.

Figure 10: The two endpoints asto,n(k) and bsto,n(k) of the open interval Isto,n(k), plotted as functions
in both k and n, for

√
2 ≤ k ≤ 10 and 1 ≤ n ≤ 10000, respectively. Both three-dimensional plots contain

exactly the same information, but they are shown from different points of view.

Figure 11: Plots of the endpoints âsto,n(k) (orange line) and b̂sto,n(k) (green line) of the open intervals

Îsto,n(k), for k =
√

20 (left) and k = 10 (right) containing at least 95 percent and at least 99 percent
of the free energies G◦37(S) of all secondary structures S 6= ∅ of size n under the assumption of our dy-
namic model, respectively, together with the corresponding “interval endpoints” {n1 + n2−n1

2 , An1,n2(k)}
(orange) and {n1 + n2−n1

2 , Bn1,n2(k)} (green) obtained from our biological database.
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Figure 12: The two endpoints âsto,n(k) and b̂sto,n(k) of the open interval Îsto,n(k), plotted as functions
in both k and n, for

√
2 ≤ k ≤ 10 and 1 ≤ n ≤ 10000, respectively. Both three-dimensional plots contain

exactly the same information, but they are shown from different points of view.

Figure 13: Plots of the intervals Isto,n(k) (blue) and Îsto,n(k) (purple) derived from our tRNA database,
for k =

√
2 (left) and k = 2 (right), respectively, together with the 2163 points {n,G◦37(S)} for each

secondary structure S 6= ∅ of size n given in our tRNA database.

Figure 14: Plots of the intervals Isto,n(k) (blue) and Îsto,n(k) (purple) derived from our 5S rRNA database,
for k =

√
2 (left) and k = 2 (right), respectively, together with the 1292 points {n,G◦37(S)} for each

secondary structure S 6= ∅ of size n given in our 5S rRNA database.

Figure 15: Plots of the intervals Isto,n(k) (blue) and Îsto,n(k) (purple) derived from our SSU rRNA
database, for k =

√
20 (left) and k = 10 (right), respectively, together with the 1308 points {n,G◦37(S)}

for each secondary structure S 6= ∅ of size n given in our SSU rRNA database.
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Figure 16: Plots of the intervals Isto,n(k) (blue) and Îsto,n(k) (purple) derived from our LSU rRNA
database, for k =

√
20 (left) and k = 10 (right), respectively, together with the 558 points {n,G◦37(S)}

for each secondary structure S 6= ∅ of size n given in our LSU rRNA database.
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