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Abstract

Over the last decades, much effort has been made to develop approaches for identifying good predic-
tions of RNA secondary structure. This is due to the fact that most computational prediction methods
based on free energy minimization compute a number of suboptimal foldings and we have to identify
the native folding among all these possible secondary structures. Using the abstract shapes approach
as introduced by Giegerich et al. [GVR04], each class of similar secondary structures is represented by
one shape and the native structures can be found among the top shape representatives.
In this article, we derive some interesting results answering enumeration problems for abstract shapes
and secondary structures of RNA. We compute precise asymptotics for the number of different shape
representations of size n and for the number of different shapes showing up when abstracting from sec-
ondary structures of size n under a combinatorial point of view. A more realistic model taking primary
structures into account remains an open challenge – we give some arguments why the present techniques
cannot be applied in this case.

1 Introduction
Ribonucleic acid (RNA) is a single-stranded molecule. Nucleotides, composed of a phosphate group, a sugar
group (ribose) and one of the four bases adenine (A), cytosine (C), guanine (G) and uracil (U), are the
basic structural units of such nucleic acids. An RNA single-strand is formed by phosphodiester bonds linking
together nucleotides and typically is modeled as a word over the alphabet Σ = {A,C,G,U} representing
the four different bases. The specific sequence of bases along this chain is called the primary structure of
the molecule. Any of these linear primary structures may form a lot of different more complex structures
by folding. The reason for folding is that in addition to the phosphodiester bonds between neighbored
nucleotides, two bases that are not neighbored within the primary structure may form hydrogen bonds to
each other. Those bonds are most likely between the complementary bases adenine (A) and uracil (U)
resp. cytosine (C) and guanine (G) yielding stable Watson-Crick pairings. In addition, weaker base pairs
formed by the non-complementary bases guanine (G) and uracil (U) – so called wobble GU pairs – may
occur. Other pairings are possible, but they are much less likely and not as stable as the Watson-Crick
and wobble GU pairs. By pairing of nucleotides according to these rules, the linear primary structure of
an RNA molecule is folded into a three-dimensional conformation, with helices in three dimensions. This
three-dimensional conformation is called tertiary structure of the molecule, which in many cases determines
its function. It is customary in science to allow only non-crossing (nested) base pairs, such that the primary
structure remains planar, i.e. a two-dimensional conformation, called the secondary structure.
The experimental determination of RNA tertiary structures is usually time-consuming and expensive and
therefore, much effort has been made to predict a molecules structures by means of computational methods.
However, determining the tertiary structure is computationally complex, but it has proven convenient to
first search for the less complex secondary structure which can be determined efficiently. As much of the
3D structure is determined by the base-pairing interactions in the plane this allows for useful conclusions
towards the tertiary structure. The most common approach for predicting the secondary structure of an
RNA molecule is free energy minimization. As in nature every RNA molecule seeks to achieve a minimum
of free energy by folding into a higher-dimensional conformation, it is assumed that the correct structure is
the one with the lowest free energy. The most successful and popular method for energy minimization over
the last 30 years has been the use of dynamic programming algorithms. While some of the first algorithms
in this field computed only one secondary structure with the lowest free energy according to different
energy models (see, e.g. [NPGK78, NJ80, ZS81, SKMC83, ZS84]), most of the currently used algorithms
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additionally predict suboptimal foldings (see, e.g. [Zuk89, Zuk03, WFHS99, DL03, DCL04]). Using an
RNA folding algorithm for the computational prediction of RNA secondary structures which additionally
creates suboptimal solutions, we have to search a huge set for native solutions at the end. However, this set
of suboptimal foldings usually contains lots of similar structures and we are only interested in structures
with significant structural differences. For this reason, the concept of abstract shapes was introduced by
Giegerich et al. [GVR04]. Abstract shapes are morphic images of secondary structures, where each shape
comprises a class of similar structures. Furthermore, an abstract shape class has a representative structure
with minimum free energy.
Consequently, using this concept of abstract shapes, we can find the native structures among the top shape
representatives. This means that we do not have to search for native structures in the huge set of suboptimal
minimum free energy structures anymore, but in the much smaller set of shape representatives.
Based on this approach, an RNA analysis software package called RNAShapes has been developed [SVR+06b,
SVR+06a]. This package integrates three analysis tools based on the abstract shape approach: the analysis
of shape representatives [GVR04], the calculation of shape probabilities [VGR06] and the consensus shapes
approach [RG05]. It also has a number of useful features like for example the ability to compute suboptimal
foldings.
It should also be mentioned that recently, abstract shapes (and also certain corresponding asymptotical
numbers, of which some will be derived in this article) gained significantly in importance, as a new approach
for faster searching of RNA family databases based on shape abstractions, which is called shape based
indexing, has been invented [JRG08]. In fact, asymptotics as calculated in this article (irrespective of
primary structure) are correctly seen as upper bound to the size of shape indices for large databases.
Obviously, in order to analyze the expected complexity of algorithms dealing with abstract shapes, the first
question is to know the size of the search space those algorithms have to deal with. Accordingly, enumeration
results with respect to the number of different abstract shapes of a given size are of interest. Furthermore,
since an abstract shape serves as a representative of numerous secondary structures, the (average) number of
different foldings (secondary structures) represented by a single shape should be known (e.g. in connection
with shape based indexing) and can be concluded from our results.
The rest of this paper is organized as follows: First, we will compute asymptotical representations for the
number of different shape representations of size n. Afterwards, we will analyze the number of different
shapes showing up when abstracting from secondary structures of size n under a complete combinatorial
point of view (ignoring primary structure and complementarity of bases). Finally, we will discuss problems
arising when switching to more realistic models taking primary structure into account.

2 Formal Framework
In this section, we present the formal framework needed for our investigations.

2.1 RNA Secondary Structures
As secondary structures are two-dimensional, they can be modeled as planar graphs. A formal definition is
given as follows:

Definition 2.1 ([Wat78]) A secondary structure of size n is a loop free graph on the set of n labeled
points {1, 2, . . . , n} such that the adjacency matrix A = (aij) (which is defined in the usual way by aij = 1
if i and j are adjacent, and aij = 0 otherwise, with aii = 0) has the following three properties:

1. ai,i+1 = 1 for 1 ≤ i ≤ n− 1.

2. For each fixed i, 1 ≤ i ≤ n, there is at most one ai,j = 1 where j 6= i± 1.

3. If ai,j = ak,l = 1, where i < k < j, then i ≤ l ≤ j.

Note that constraint 2 of Definition 2.1 implies that even nucleotides only one position apart may form a
hydrogen bond1, condition 3 ensures that these graph representations remain planar. In fact, according
to this constraint, pseudoknots are prohibited. Pseudoknots [PB89, AvdBvBP90, GW90, DPD92, Ple94],
formed by two crossing base pairs, are often considered as belonging to the tertiary structure and are usually
not permitted in definitions of secondary structures2. An example for a secondary structure in planar graph
representation is shown in Figure 1.

1Later, we will speak of the minimal length of hairpin loops being 1, but so far we don’t have the right vocabulary.
2Allowing pseudoknots makes secondary structure prediction to become NP complete, which probably is the reason for

their exclusion.

2



Figure 1: An RNA secondary structure.

Besides this rather descriptive model, many other ways of formalizing RNA folding have been described in
literature. One example is the so called dot-bracket representation, where a secondary structure is modeled as
a string over the alphabet Σ := {(((, ))), ...}; a dot represents an unpaired nucleotide and a pair of corresponding
brackets ((( ))) represents two paired bases. As abstract shapes build on this representation, we proceed with
the following definition:

Definition 2.2 ([VC85]) For Σ := {(((, ))), ...} and w ∈ Σ∗ let |w|x for x ∈ Σ denote the number of occurrences
of symbol x in w. Then a word w ∈ Σn is a secondary structure of size n if w satisfies the three following
conditions:

1. For every factorization w = u · v, |u|((( ≥ |u|))).

2. |w|((( = |w|))).

3. w has no factor ((( ))).

We mention by passing that words over the alphabet {(((, )))} which satisfy the first two conditions of the
previous definition are known as semi-Dyck words, whereas words over the alphabet Σ satisfying these
first two conditions are known as Motzkin words. The model of dot-bracket representations is 1-to-1 to
Waterman’s planar graphs. It should be clear that both models abstract from primary structure, as they
only consider the number of base pairs and unpaired bases and their positions.
Any secondary structure consists of several substructures and therefore can be decomposed into different
structural components. The simplest substructures are introduced by the following definition, partially
given in [Neb04]:

Definition 2.3 Let w be a secondary structure of size n and let wi denote the i-th symbol of w, 1 ≤ i ≤ n.

1. The subword v = wi+1 . . . wj−1 is a (hairpin) loop, if v ∈ {...}+ and wiwj = ((( ))) is a corresponding pair
of brackets of w.

2. The subword v = wi+1 . . . wj−1 is a bulge, if v ∈ {...}+ and wiwj ∈ {(((, )))}2 but wiwj does not represent
a pair of corresponding brackets of w. A bulge for which wi = ))) and wj = ((( holds is called join.

3. An interior loop is two subwords (bulges) u = wi+1 . . . wj−1 and v = wk+1 . . . wl−1 such that u ∈ {...}+,
v ∈ {...}+ and wiwl = ((( ))), wjwk = ((( ))) are corresponding pairs of brackets of w, where i < j < k < l.

4. A tail is a prefix v = w1 . . . wi resp. a suffix v = wj . . . wn such that v ∈ {...}+ and wi+1 resp. wj−1 is
in {(((, )))}.

5. A ladder (or helical region) consists of two maximal subwords u, v such that u = wi . . . wi+c and
v = wj . . . wj+c and wi+kwj+c−k is a pair of corresponding brackets, 0 ≤ k ≤ c. The length of a
ladder is given by c + 1.

6. A hairpin is a subword v = wi+1 . . . wj−1 such that v contains exactly one loop, wi+1wj−1 is a
corresponding pair of brackets of w, but wiwj is none.
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7. For every k ≥ 2, a multiloop is a subword u = wj0+1 . . . wi1 . . . wj1 . . . wi2 . . . wjk
. . . wik+1−1 such that

wj0wik+1 , wi1wj1 , . . . , wik
wjk

are pairs of corresponding brackets of w and each of the k subwords
wi1 . . . wj1 , . . . , wik

. . . wjk
contains at least one loop. Furthermore, if jl < il+1 for l ∈ {0, . . . , k},

then wjl+1 . . . wil+1−1 ∈ {...}+. (Here 1 ≤ j0 ≤ i1 < j1 ≤ i2 < . . . < jk ≤ ik+1 ≤ n.)
The k subwords wi1 . . . wj1 , . . . , wik

. . . wjk
are called the helices of the multiloop.

Note that the third condition of Definition 2.2 only ensures that a hairpin loop consists of at least one
unpaired nucleotide in accordance with Waterman’s model. Though in reality, hairpin loops of length less
than three are impossible and do not form3.
The next theorem shows that every RNA secondary structure can be built using the previously defined
structural components.

Theorem 2.1 ([Wat78]) Any secondary structure can be uniquely decomposed into loops, ladders, bulges,
and tails. Alternatively, every secondary structure can be uniquely decomposed into hairpins and ladders,
bulges, and tails which are not members of a hairpin.

Furthermore, every secondary structure of an RNA molecule that is not completely unpaired forms an
exterior loop, which can be a seen as a list of adjacent substructures or adjacent structural components of
this secondary structure.
An illustration of the different structural components is given in Figure 2, as well as in the following example.

Figure 2: Colored version of the secondary structure shown in Figure 1. For each helical region, paired bases are
colored with matching colors. Additionally, hairpin loops are colored brown, single bulges interrupting
ladders are colored light gray, interior loops are colored dark gray, and unpaired regions in multiloops
and exterior loops are colored white and light pink, respectively. The exterior loop is composed of three
adjacent structural components: a tail (light pink), a folded region and another tail (also light pink). The
structure possesses two multiloops; the first with three helical regions (colored red, yellow and green) and
the second with two helical regions (colored blue and pink).

Example 2.1 The secondary structure shown in Figure 1 (and in Figure 2) can be represented by a dot-
bracket word which can be decomposed into subwords corresponding to basic structural components as follows:

exterior loop︷ ︸︸ ︷
............︸︷︷︸
tail

((((((((((((

multiloop︷ ︸︸ ︷
.........︸︷︷︸

bulge

HELIX1 .........︸︷︷︸
join

HELIX2 ......︸︷︷︸
join

HELIX3 ...︸︷︷︸
bulge

))))))))))))

︸ ︷︷ ︸
folded region (helix)

......︸︷︷︸
tail

Subwords:
3Of course, it would be an easy task to change the definition in order to allow loops of length at least 3 only. However,

when changing to enumeration and corresponding methods from singularity analysis, such a change would imply polynomials
of higher degree and the need to compute their roots. Thus, in order to keep the mathematics behind the model manageable,
one probably resigned this modification. Nevertheless, for covariance models, where these reasons do not apply, one sometimes
allows loops of length 0 in the consensus.
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• HELIX1:

(((((((((((( ............︸︷︷︸
bulge

hairpin︷ ︸︸ ︷
((((((((( ..................︸︷︷︸

hairpin loop

))))))))) ))))))))))))

︸ ︷︷ ︸
helix

• HELIX2:

(((((((((

multiloop︷ ︸︸ ︷
......︸︷︷︸

bulge

(((((((((((( ...︸︷︷︸
bulge

(((((( ...︸︷︷︸
bulge

hairpin︷ ︸︸ ︷
((( ............︸︷︷︸

hairpin loop

))) )))))) .....................︸︷︷︸
bulge

))))))))))))

︸ ︷︷ ︸
helix

...............︸︷︷︸
join

((( ...︸︷︷︸
bulge

hairpin︷ ︸︸ ︷
(((((( ...............︸︷︷︸

hairpin loop

)))))) ...︸︷︷︸
bulge

)))

︸ ︷︷ ︸
helix

)))))))))

︸ ︷︷ ︸
helix

• HELIX3:

(((((( ......︸︷︷︸
bulge

((( ......︸︷︷︸
bulge

hairpin︷ ︸︸ ︷
(((((((((((( .........︸︷︷︸

hairpin loop

)))))))))))) .....................︸︷︷︸
bulge

))) ......︸︷︷︸
bulge

))))))

︸ ︷︷ ︸
helix

Note that the shown decomposition of this dot-bracket representation will be used to illustrate the construction
of abstract shapes of RNA in the sequel.

The reading order of secondary structures in dot-bracket representation is from left to right, which corre-
sponds to the reading order of the primary structure and is due to the chemical structure of the molecule.

2.2 Abstract Shapes of RNA
In this section, we want to give all the definitions and ideas concerning abstract shapes that will be needed
for our further investigations.

2.2.1 Shape Definitions

There are five shape types for five different levels of abstraction. Two of them, namely type 1 and type 5
(also called π′ and π shapes, respectively), were formally defined by a tree morphism in [GVR04]. All five
different shape levels were first introduced and informally described in [SVR+06a] making use of dot-bracket
representations. However, since the different shape types were supposed to gradually increase abstraction
and it was later observed that the shape definitions given in [SVR+06a] were not appropriate, the different
abstraction levels were redefined (informally) in [JRG08].
In this paper, we will consider the renewed shape abstraction types as described in [JRG08]. Results like
those of this article related to the original definitions can be found in [SN08]. In fact, the results pre-
sented in this previous work provide evidence that the original hierarchy of abstraction levels as introduced
in [SVR+06a] was not properly ordered4.
Common to all levels is their abstraction from loop and ladder lengths, while generally retaining nesting
and adjacency of helices, but disregarding their size and concrete position in the primary structure. In the
most accurate shape type (type 1), all structural components (except hairpin loops) contribute to the shape
representation. The succeeding shape types gradually increase abstraction by disregarding certain unpaired
regions or combining nested helices.
In general, entire helical regions are represented by a pair of opening and closing squared brackets [[[ resp. ]]]
and unpaired regions are represented by a single underscore ___, see [GVR04].
According to [JRG08] the different shape types are defined as follows:

Type 1:

Most accurate – all loops and all unpaired
4In accordance with observations independently made by R. Giegerich at about the same time (personal communication).

5



Accordingly, each helical region is depicted by a single pair of opening and closing squared brackets and
all unpaired regions (except hairpin loops5) are represented as a single underscore. Thus, all structural
components contribute to this shape representation6, nesting and adjacency of helices are retained. As a
consequence, this shape type only abstracts from loop and ladder lengths.

Type 2:

Nesting pattern for all loop types and
unpaired regions in ladder interrupting bulges and interior loops

Consequently, all helical regions (ladders) are depicted by a pair of opening and closing squared brackets
and furthermore, single ladder interrupting bulges and unpaired regions in interior loops are represented
as a single underscore, respectively. This means that in this shape representation, nesting and adjacency
of helices is still retained, but in difference to type 1 shape representations, not all structural components
contribute to this shape representation, since underscores representing single-stranded regions in exterior
loops and multiloops are omitted.

Type 3:

Nesting pattern for all loop types, but no unpaired regions

Shape representations of type 3 thus also retain nesting and adjacency of helices, since all helical regions are
depicted by a pair of opening and closing squared brackets. But in contrast to the previously introduced
two types, no unpaired regions are considered.

Type 4:

No nesting pattern for ladder interruptions by single bulges,
nesting pattern for all other loop types and no unpaired regions

Compared to type 3 shapes, the only difference is that nested helices which are only interrupted by a single
bulge are combined and represented by one pair of squared brackets only.

Type 5:

Most abstract – helix nesting pattern and no unpaired regions

In this shape abstraction, we do not account for any helix interruptions (by single bulges or interior loops).
This means that (interrupted) ladders are depicted by a pair of opening and closing squared brackets, since
nested helices are now always combined.

The differences between these five abstraction levels are illustrated in Example 2.2.

Example 2.2 Considering the dot-bracket representation of the secondary structure shown in Figure 1 and
its decomposition into structural components as presented in Example 2.1, the differences between the five
shape types resp. the five abstraction levels are easy to see:

Sec. str. ............ (((((((((((( ......... HELIX1 ......... HELIX2 ...... HELIX3 ... )))))))))))) ......
Type 1 ___ [[[ ___ HELIX1 ___ HELIX2 ___ HELIX3 ___ ]]] ___
Type 2 [[[ HELIX1 HELIX2 HELIX3 ]]]
Type 3 [[[ HELIX1 HELIX2 HELIX3 ]]]
Type 4 [[[ HELIX1 HELIX2 HELIX3 ]]]
Type 5 [[[ HELIX1 HELIX2 HELIX3 ]]]

HELIX1:
5According to the informal description of level 1 shapes given in [JRG08], it is not clear whether the (one and only but

always existing) unpaired region in a hairpin must be recorded on this shape abstraction level or not. Here, we decided to follow
the definition used by the RNAShapes tool, which is available at http://bibiserv.techfak.uni-bielefeld.de/rnashapes/
welcome.html. This tool assumes that hairpin loops are not recorded.

6Note that it does not matter if a hairpin is represented only by a pair of corresponding squared brackets or by a pair of
corresponding squared brackets with an underscore in between, as there must always exist an unpaired region of length at
least one in any hairpin.
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Sec. str. (((((((((((( ............ ((((((((( .................. ))))))))) ))))))))))))
Type 1 [[[ ___ [[[ ]]] ]]]
Type 2 [[[ ___ [[[ ]]] ]]]
Type 3 [[[ [[[ ]]] ]]]
Type 4 [[[ ]]]
Type 5 [[[ ]]]

HELIX2:

Sec. str. ((((((((( ...... (((((((((((( ... (((((( ... ((( ............ ))) )))))) ..................... )))))))))))) ............... ((( ... (((((( ............... )))))) ... ))) )))))))))
Type 1 [[[ ___ [[[ ___ [[[ ___ [[[ ]]] ]]] ___ ]]] ___ [[[ ___ [[[ ]]] ___ ]]] ]]]
Type 2 [[[ [[[ ___ [[[ ___ [[[ ]]] ]]] ___ ]]] [[[ ___ [[[ ]]] ___ ]]] ]]]
Type 3 [[[ [[[ [[[ [[[ ]]] ]]] ]]] [[[ [[[ ]]] ]]] ]]]
Type 4 [[[ [[[ [[[ ]]] ]]] [[[ [[[ ]]] ]]] ]]]
Type 5 [[[ [[[ ]]] [[[ ]]] ]]]

HELIX3:

Sec. str. (((((( ...... ((( ...... (((((((((((( ......... )))))))))))) ..................... ))) ...... ))))))
Type 1 [[[ ___ [[[ ___ [[[ ]]] ___ ]]] ___ ]]]
Type 2 [[[ ___ [[[ ___ [[[ ]]] ___ ]]] ___ ]]]
Type 3 [[[ [[[ [[[ ]]] ]]] ]]]
Type 4 [[[ [[[ [[[ ]]] ]]] ]]]
Type 5 [[[ ]]]

2.2.2 Shape Languages

We now want to invent formal definitions of languages containing exactly all shapes of a certain type. At
this point as well as for our further studies, we assume the reader to be familiar with basic notions from
formal languages and grammars (see e.g. [HMU01] or [Har78] if needed).
For Li the language of all shapes of type i, our first goal is to provide a formal definition of language L1.
We start by observing that for this type, the shape representation of a totally unpaired secondary structure
is given by a single underscore, so {___} must be a subset of language L1. On the other hand, each secondary
structure not totally unpaired represents an exterior loop containing at least one helical region. The first
(last) helical region in this exterior loop may be preceeded (followed) by a tail. Furthermore, there may
be a join between two helical regions. This means that every secondary structure that is not completely
unpaired and whose exterior loop contains n ≥ 1 adjacent helices can be represented as a word

s = t0(((a1u1)))a1t1 · · · tn−1(((anun)))antn,

where ai ≥ 1, 1 ≤ i ≤ n, tj ∈ {...}∗, 0 ≤ j ≤ n, and each of the subwords u1, . . . , un must contain at least one
(hairpin) loop. As by definition, helical regions, tails and joins contribute to this shape representation, any
such secondary structure is mapped to a type 1 shape like v0[[[w1]]] · · · vn−1[[[wn]]]vn, where each of the words
wi is the morphic image of subword ui of s, 1 ≤ i ≤ n, and every word vi ∈ {___, ε}, ε the empty word.
Thus, let Lu = {___, ε} be the language of the two possible morphic images of unpaired regions and let Ll1

be the language containing exactly all morphic images of helices. Furthermore, let Ll1u := Ll1Lu be the
concatenation of these two languages. Obviously, any type 1 shape of the form v0[[[w1]]] · · · vn−1[[[wn]]]vn, n ≥ 1,
is contained in the language LuL+

l1u and thus, every possible secondary structure is mapped to a type 1
shape in {___} ∪ LuL+

l1u.
To get a structural characterization of Ll1 , we observe that a helix may be a hairpin, which is represented
by a word (((a...+)))a, a ≥ 1, in the secondary structure and mapped to the word [[[ ]]]. But a helix may also be
decomposed into a ladder, one or two bulges interrupting this ladder and another helix, whose helical region
is the second part of this interrupted ladder. Hence, a given secondary structure may contain subwords
(((a...+(((bu)))b)))a, (((a(((bu)))b...+)))a and (((a...+(((bu)))b...+)))a, for some a, b ≥ 1, where (((bu)))b is again a helix. As both ladders
and bulges interrupting loops contribute to type 1 representations, their morphic images are given by [[[___[[[w]]]]]],
[[[[[[w]]]___]]] and [[[___[[[w]]]___]]], respectively, where the subwords [[[w]]] are again contained in the language Ll1 . Finally,
a helix may be a multiloop and thus, the language L1 can be characterized as follows:

Definition 2.4 The language L1 containing exactly all type 1 shapes is given by L1 := {___} ∪ LuL+
l1u,

Lu := {___, ε}, for Ll1u := Ll1Lu and Ll1 the smallest language satisfying the following conditions:

1. [[[ ]]] ∈ Ll1 .
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2. If w ∈ Ll1 , then [[[___w]]], [[[w___]]], [[[___w___]]] ∈ Ll1 .

3. If w1, . . . , wn ∈ Ll1 , v0, . . . , vn ∈ Lu and n ≥ 2, then [[[v0w1v1w2 . . . vn−1wnvn]]] ∈ Ll1 .

Alternatively, a formal definition of the language L1 could be given as follows:

Definition 2.5 The language L1 containing exactly all type 1 shapes is given by L1 := {___} ∪ LuL+
l1u,

Lu := {___, ε}, for Ll1u := [[[Ll1]]]Lu and Ll1 the smallest language satisfying the following conditions:

1. ε ∈ Ll1 .

2. If w ∈ Ll1 , then ___[[[w]]], [[[w]]]___,___[[[w]]]___ ∈ Ll1 .

3. If w1, . . . , wn ∈ Ll1 , v0, . . . , vn ∈ Lu and n ≥ 2, then v0[[[w1]]]v1[[[w2]]] . . . vn−1[[[wn]]]vn ∈ Ll1 .

We will use the second characterization, since it will be more useful for our further investigations.

As by definition, hairpin loops and unpaired regions in exterior loops and multiloops do not contribute to
shape representations of type 2, a characterization of the language L2 containing exactly all type 2 shapes
can easily be obtained from that of the language L1. We immediately obtain:

Definition 2.6 The language L2 containing exactly all type 2 shapes is given by L2 := {ε} ∪ L+
l2u, where

Ll2u := [[[Ll2]]] and Ll2 is the smallest language satisfying the following conditions:

1. ε ∈ Ll2 .

2. If w ∈ Ll2 , then ___[[[w]]], [[[w]]]___,___[[[w]]]___ ∈ Ll2 .

3. If w1, . . . , wn ∈ Ll2 and n ≥ 2, then [[[w1]]][[[w2]]] . . . [[[wn]]] ∈ Ll2 .

The language L3 containing exactly all type 3 shapes can easily be characterized by taking into account
that all single-stranded regions are ignored in these shape representations. Hence, considering the definition
of the language L1 resp. L2, we obtain the following language definition for type 3 shapes:

Definition 2.7 The language L3 containing exactly all type 3 shapes is given by L3 := {ε} ∪ L+
l3u, where

Ll3u := [[[Ll3]]] and Ll3 is the smallest language satisfying the following conditions:

1. ε ∈ Ll3 .

2. If w ∈ Ll3 , then [[[w]]] ∈ Ll3 .

3. If w1, . . . , wn ∈ Ll3 and n ≥ 2, then [[[w1]]][[[w2]]] . . . [[[wn]]] ∈ Ll3 .

Now, we want to give a formal definition of the language L4 containing exactly all type 4 shape represen-
tations. Therefore, recall that their only difference to type 3 shapes is that nested helices are combined if
the nesting is due to a helix interruption by a single bulge. As on abstraction level 4, nested helices are not
yet combined if the nesting is caused by an interior loop but unpaired regions are always eliminated, it is
obvious that a characterization of the language L4 is given as follows:

Definition 2.8 The language L4 containing exactly all type 4 shapes is equal to the language L3 containing
exactly all type 3 shapes.

Finally, the language L5 containing exactly all type 5 shapes can easily be characterized by modifying the
definition of the language L3, such that no nesting patterns for interruptions of ladders (by single bulges or
interior loops) are retained. This yields the following characterization:

Definition 2.9 The language L5 containing exactly all type 5 shapes is given by L5 := {ε} ∪ L+
l5u, where

Ll5u := [[[Ll5]]] and Ll5 is the smallest language satisfying the following conditions:

1. ε ∈ Ll5 .

2. If w1, . . . , wn ∈ Ll5 and n ≥ 2, then [[[w1]]][[[w2]]] . . . [[[wn]]] ∈ Ll5 .
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2.2.3 Shape Grammars

The next goal is to find five unambiguous7 context-free grammars Gi with L(Gi) = Li, 1 ≤ i ≤ 5, where
L(G) denotes the language generated by G.
First, we consider G1 with axiom S1, observing that for this abstraction type, the shape representation of
a totally unpaired secondary structure is given by a single underscore. So the first production rules might
be S1 → A and S1 → ___, where A is the start symbol for all type 1 shapes representing a folded secondary
structure. According to Definition 2.5, we observe that the language generated by nonterminal A must be
equal to

L1 \ {___} =LuL+
l1u

=Lu[[[Ll1]]]LuL∗l1u

=Lu[[[Ll1]]]Lu({ε} ∪ L+
l1u)

=Lu[[[Ll1]]](Lu ∪ LuL+
l1u)

=Lu[[[Ll1]]](Lu ∪ L1 \ {___})
={ε,___}[[[Ll1]]]({ε,___} ∪ L1 \ {___}).

Therefore, we use the productions A → C[[[B]]]D, C → ε, C → ___, as well as D → ε, D → ___ and D → A.
Obviously, the language that is generated by starting with nonterminal B on the right-hand side of the
production A → C[[[B]]]D must be equal to Ll1 . Thus, the expression [[[B]]] may generate a hairpin, a bulge
interrupting a ladder, an interior loop interrupting a ladder or a ladder whose last pair is the foundation of
a multiloop. Resorting to Definition 2.5 again, we immediately observe that we have to use the production
rules B → ε (hairpin generating rule), B → ___[[[B]]] (generates a bulge interrupting a ladder on the left),
B → [[[B]]]___ (generates a bulge interrupting a ladder on the right), B → ___[[[B]]]___ (interior loop generating
rule) and B → C[[[B]]]A (multiloop generating rule). Combining all these productions, we find the following
grammar which, after a moment’s reflection, proofs to be unambigous:

Lemma 2.2 A context-free grammar G1 unambiguously generating exactly the language L1 is given by
G1 = (I,Σ, R, S1), where I = {S1, A, B,C,D}, Σ = {___, [[[, ]]]} and R contains exactly the following rules:

S1 → A, S1 → ___,
A → C[[[B]]]D,
B → ε, B → C[[[B]]]A, B → ___[[[B]]], B → [[[B]]]___, B → ___[[[B]]]___,
C → ε, C → ___,
D → ε, D → ___, D → A.

We may now proceed the same way we derived the characterizations of Li from that of Li−1 in order to
deduce grammar Gi from Gi−1, 2 ≤ i ≤ 5. All we have to take care of is that we don’t introduce ambiguity
while modifying the grammars.

Lemma 2.3 A context-free grammar G2 unambiguously generating exactly the language L2 is given by
G2 = (I,Σ, R, S2), where I = {S2, A, B,D}, Σ = {___, [[[, ]]]} and R contains exactly the following rules:

S2 → A, S2 → ε,
A → [[[B]]]D,
B → ε, B → [[[B]]]A, B → ___[[[B]]], B → [[[B]]]___, B → ___[[[B]]]___,
D → ε, D → A.

Lemma 2.4 A context-free grammar G3 unambiguously generating exactly the language L3 is given by
G3 = (I,Σ, R, S3), where I = {S3, A, B,D}, Σ = {[[[, ]]]} and R contains exactly the following rules:

S3 → A, S3 → ε,
A → [[[B]]]D,
B → ε, B → [[[B]]]A, B → [[[B]]],
D → ε, D → A.

Lemma 2.5 A context-free grammar G4 unambiguously generating exactly the language L4 is given by the
grammar G3 of Lemma 2.4.

7Unambiguity is necessary, as we later want to use these grammars to construct generating functions counting the numbers
of type i shapes, 1 ≤ i ≤ 5. If there are more than one leftmost derivations for a type i shape sh, 1 ≤ i ≤ 5, then sh is counted
more than once by the corresponding generating function.
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Type Number of shapes
1 s1n ∼ 2.40591n · 0.989959 · n−3/2

2 s2n
∼ 2.0523n · 0.88639 · n−3/2

3, 4 s3n = s4n ∼ ((−2)n + 2n) ·
√

2
π

(
1
n

)3/2 ≈ ((−2.)n + 2.n) · 0.797885 · n−3/2

5 s5n
∼ 3n/2 (1 + (−1)n) ·

√
3
2π

(
1
n

)3/2 ≈ 1.73205n (1. + (−1.)n) · 0.690988 · n−3/2

Table 1: Precise asymptotics of the numbers sin of type i shapes of size n, 1 ≤ i ≤ 5.

Lemma 2.6 A context-free grammar G5 unambiguously generating exactly the language L5 is given by
G5 = (I,Σ, R, S5), where I = {S5, A, B,D}, Σ = {[[[, ]]]} and R contains exactly the following rules:

S5 → A, S5 → ε,
A → [[[B]]]D,
B → ε, B → [[[B]]]A,
D → ε, D → A.

3 Number of Shapes
We start this section by deriving combinatorial result for shapes, namely the number of type i shapes of size
n, for each i ∈ {1, . . . , 5}. In fact, we aim at determining asymptotical representations of the numbers sin

of type i shapes of size n, 1 ≤ i ≤ 5. Note that asymptotics for s1n and s5n have already been determined
in [LPC08]. We present them for the sake of completeness only.

Theorem 3.1 The numbers sin of type i shapes, 1 ≤ i ≤ 5, of size n, n →∞, are asymptotically given in
Table 1.

Proof: To obtain the desired results, we are going to use the method of generating functions8. In
particular, we first want to compute closed forms of ordinary generating functions Si(z), 1 ≤ i ≤ 5,
counting the numbers sin of type i shapes of size n and then apply Darboux’s theorem [KW89] to obtain
the desired asymptotics for sin = [zn]Si(z), 1 ≤ i ≤ 5.9 According to Chomsky and Schützenberger [CS63],
those generating functions can be derived by

• translating the grammars Gi into systems of equations for generating functions, and

• solving this system for the generating function Si(z) associated with the axiom Si of the grammar Gi.

During this translation, we have to keep track of the size of words to properly translate into the exponent
of our generating functions’ variable z, such that each shape of size n contributes to the coefficient at zn.
However, since every terminal symbol of our language contributes 1 to the size of the shape represented,
this can easily be done by introducing a factor z for each terminal symbol and a factor 1 for the empty
word ε.
Considering the grammars Gi, 1 ≤ i ≤ 5, the resulting systems of equations are given as follows:

• generating function S1(z):

S1(z) = A(z) + z,

A(z) = C(z) · z2 ·B(z) ·D(z),

B(z) = 1 + C(z) · z2 ·B(z) ·A(z) + z · z2 ·B(z) + z2 ·B(z) · z + z · z2 ·B(z) · z, (1)
C(z) = 1 + z,

D(z) = 1 + z + A(z).

• generating function S2(z):

S2(z) = A(z) + 1,

8Note that in this article, we will not recall the fundamental definitions and methods concerning generating functions. An
introduction to generating functions and some of their uses in discrete mathematics can be found for example in [FS09, Wil94].
Several pretty examples for generating functions can be found in [Com74]. Furthermore, for an introduction to some advanced
methods that have to be used for more difficult problems, see for example [GK90].

9In this paper, we use [zn]S(z) to denote the coefficient at zn in the expansion of S(z) around z = 0.
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A(z) = z2 ·B(z) ·D(z),

B(z) = 1 + z2 ·B(z) ·A(z) + z · z2 ·B(z) + z2 ·B(z) · z + z · z2 ·B(z) · z,

D(z) = 1 + A(z).

• generating functions S3(z) and S4(z):

S3(z) = A(z) + 1,

A(z) = z2 ·B(z) ·D(z),

B(z) = 1 + z2 ·B(z) ·A(z) + z2 ·B(z),
D(z) = 1 + A(z).

• generating function S5(z):

S5(z) = A(z) + 1,

A(z) = z2 ·B(z) ·D(z),

B(z) = 1 + z2 ·B(z) ·A(z),
D(z) = 1 + A(z).

After solving these systems for Si(z), 1 ≤ i ≤ 5, we can use Darboux’s theorem [KW89] to determine precise
asymptotics for the nth coefficients (n →∞) of the five ordinary generating functions Si(z), 1 ≤ i ≤ 5. By
choosing m = 010 for the application of Darboux’s theorem and afterwards computing series expansions of
the resulting asymptotics about n →∞, we finally obtain the desired results. �

Remark 3.1 There is an alternative approach to find the generating functions Si(z), 1 ≤ i ≤ 5: From our
previous discussion, it should be obvious that a type i shape, 2 ≤ i ≤ 5, results from a type 1 shape by
deleting symbols according to the higher level of abstraction. This is in line with our grammars, where Gi,
2 ≤ i ≤ 5, can be (re)constructed from G1 by deleting production rules and nonterminal symbols. As a
consequence, by making use of a multivariate generating function S(u, v, w, . . . ), which marks the different
nonterminals on the right-hand side of different production rules of G1 by different variables, it would have
been possible to simulate the construction of grammars Gi, 2 ≤ i ≤ 5, by appropriate substitutions for the
variables of S(u, v, w, . . . ). Assume for example that variable u (v, w resp.) has been used to uniquely mark
symbol ___ within S1 → ___ (C → ___, D → ___ resp.). Then, setting (u, v, w) = (1, 0, 0) (instead of (z, z, z) for
S1(z)) would give us S2. This explains why all the asymptotics given in Table 1 are of the same pattern
having varying constants only; being able to trace back all the different shape levels to essentially the same
generating function implies an algebraic transformation of variable z when changing from one level to the
next. In our case, the transformation falls into the supercritical case of singularity analysis (see [FS09] for
details), in which the singular type for the function (and therefore the design of the asymptotic) remains
unchanged.

4 Reduction of the Search Space
We now want to focus on the main goal of this article, namely on quantifying the reduction of the search
space when using the concept of abstract shapes. Therefore, we want to compare the number of secondary
structures of size n – also termed type 0 shapes of size n in the sequel – to the number of different type i
shapes that are morphic images of those secondary structures, for every i ∈ {1, . . . , 5}. More precisely, for
every i ∈ {1, . . . , 5}, we want to compute the number of different type i shapes sh for which there exists a
secondary structure s of size n such that s is mapped to sh when applying shape abstraction of level i.
Besides assuming the unrealistic minimal number of 1 for the length of a hairpin loop and a minimum
number of 1 base pair in ladders, we will compute the desired results also under the assumption of a
minimum number of 3 unpaired bases in hairpin loops and under the assumption that no isolated base
pairs, i.e. no ladders consisting of less than 2 base pairs, can occur (see e.g. [GVR04]).
It should be obvious that by not allowing hairpin loops of length less than 3 or by avoiding ladders of length
less than 2, the number of feasible secondary structures is reduced significantly. The precise quantitative
effect of these additional restrictions is captured by the following result:

10In the considered version of Darboux’s theorem as given in [KW89], the variable m is used to choose the number of terms
for the computed asymptotic. In fact, by choosing m = 0, the resulting asymptotic consists of the leading term only.
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Number of different shapes for
Type all secondary structures of size n

minLladder = 1 0 2.61803n · 1.10437 · n−3/2

1 2.09188n · 1.50017 · n−3/2

and 2 1.84277n · 1.65267 · n−3/2

minLhairpin = 1 3 1.66034n · 1.71055 · n−3/2

4 1.60804n · 1.79677 · n−3/2

5 1.51243n · 1.84657 · n−3/2

minLladder = 1 0 2.28879n · 0.71312 · n−3/2

1 1.80776n · 1.27613 · n−3/2

and 2 1.65404n · 1.50643 · n−3/2

minLhairpin = 3 3 1.4616n · 1.85429 · n−3/2

4 1.42194n · 2.04493 · n−3/2

5 1.32218n · 2.44251 · n−3/2

minLladder = 2 0 1.96798n · 2.1614 · n−3/2

1 1.56947n · 3.4426 · n−3/2

and 2 1.43537n · 3.88212 · n−3/2

minLhairpin = 1 3 1.33966n · 4.03737 · n−3/2

4 1.32321n · 4.17456 · n−3/2

5 1.26585n · 4.37739 · n−3/2

minLladder = 2 0 1.84892n · 1.48483 · n−3/2

1 1.47667n · 3.04214 · n−3/2

and 2 1.37736n · 3.61323 · n−3/2

minLhairpin = 3 3 1.27614n · 4.19348 · n−3/2

4 1.26197n · 4.42176 · n−3/2

5 1.20259n · 5.12777 · n−3/2

Table 2: Asymptotics for the numbers s0(n, minLladder, minLhairpin) of all secondary structures (type 0 shapes) of
size n, as well as for the numbers mi(n, minLladder, minLhairpin) of different type i shapes, 1 ≤ i ≤ 5, that are
morphic images of secondary structures of size n, assuming a minimum hairpin length minLhairpin ∈ {1, 3}
and a minimum ladder length minLladder ∈ {1, 2}.

Theorem 4.1 Under the assumption of each possible combination of a minimum hairpin loop length
minLhairpin ∈ {1, 3} and a minimum helix length minLladder ∈ {1, 2}, the numbers mi(n, minLladder,minLhairpin)
of different type i shapes, 1 ≤ i ≤ 5, that are morphic images of secondary structures of size n, n →∞, are
asymptotically given in Table 2.

Note that for type 1 and type 5 shapes, the corresponding results under the assumption of a minimum
hairpin length minLhairpin = 3 and a minimum ladder length minLladder = 1 have already been determined
by Lorenz et. al [LPC08].

Proof: For the sake of simplicity, let us assume that minLladder = 1 and minLhairpin = 1.
Let Ss be the combinatorial class of all secondary structures and let hi : Ss → Si be the morphism mapping
a secondary structure s to its type i shape sh, 1 ≤ i ≤ 5. Then, for every i ∈ {1, . . . , 5}, let

Mi := {sh | sh ∈ Si ∧ ∃s ∈ Ss [|s| ≥ 1 ∧ hi(s) = sh]}

be the combinatorial class of all different type i shapes that are morphic images of secondary structures of
any length, 1 ≤ i ≤ 5. Thus, our goal is to compute an asymptotical representation of

min := card(Min),

where
Min := {sh | sh ∈ Si ∧ ∃s ∈ Ss [|s| = n ∧ hi(s) = sh]}.

To reach this goal, we will make use of the fact that the number of different type i shapes that are morphic
images of secondary structures of size n is equal to the number of different type i shapes that are morphic
images of secondary structures of size at most n, for each i ∈ {1, . . . , 5}. In fact, for each length n ≥ 1,

Min = {sh | sh ∈ Si ∧ ∃s ∈ Ss [|s| ≤ n ∧ hi(s) = sh]},
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1 ≤ i ≤ 5, holds, which results from the observation that every secondary structure can be prolongated
to an arbitrary size without changing its image under hi, 1 ≤ i ≤ 5, e.g. by inserting a run of dots in the
dot-bracket representation. For details, see [LPC08] and the discussion below.
Using this observation, it becomes easy to construct the ordinary generating function

M1(z) =
∑
n≥0

m1nzn

of the counting sequence (m1n)n≥0. Here, variable z keeps track of the maximum size of secondary structures
s ∈ Ss, while the coefficient at zn provides the number of different type 1 shapes that result from these
secondary structures. By modifying system (1), we construct a system of equations which can be solved for
M1(z) to get a closed form of the generating function in question. Obviously, any secondary structure s is
mapped by the morphism h1 to a type 1 shape sh with |sh| = j ≤ |s|. This means that shape sh would
make a contribution of z|sh| = zj to the generating function S1(z) =

∑
sh′∈S1

z|sh′| when not “modifying”
its size. But we need sh to make a contribution of z(|sh|+p0)+p = z(j+p0)+p for each p ≥ 0, where p0 ≥ 0
is the number of additional symbols needed to construct a secondary structure s of minimum size with
h1(s) = sh. For this reason, we adapt the size of shapes by changing the contribution of the right-hand
side of several equations in system (1) to their generating function counterparts by multiplying appropriate
factors z to certain summands.
To find out which of the summands must be adapted in which way, consider for example the morphic image
of the secondary structure sec given in Example 2.1 and the corresponding type 1 shape sh presented in
Example 2.2. As we already mentioned, by using the morphism h1, this shape sh is obtained from any
secondary structure s′ that has

• the same number of unpaired regions,

• the same number of paired regions and the

• same order of adjacent and nested substructures as the secondary structure sec.

The only differences are the lengths of the unpaired and paired regions. Hence, for a large value of n, there
are plenty of different secondary structures s′ of size at most n having these properties and being mapped
to shape sh. Therefore, we start by considering a secondary structure s with minimum size among all these
secondary structures; shape sh will then be made to contribute to any size n ≥ |s|, as we may stretch s by
inserting symbols ... without changing its image with respect to h1.
Obviously, this minimum secondary structure s could easily be obtained from the shape sh as follows: First,
substitute each underscore with a dot, each opening squared bracket [[[ with and opening bracket ((( and each
closing squared bracket ]]] with a closing bracket ))). Afterwards, the desired secondary structure obviously
consists of exactly |sh| symbols. But we must recall that hairpin loops are not recorded explicitly in type
1 shapes, i.e. are not given as an underscore representing an unpaired region. For this reason, we have to
additionally add a dot for each hairpin loop during the construction of the minimum secondary structure s,
as each hairpin loop must consist of at least one unpaired nucleotide. Assuming that the shape sh contains
p0 subwords [[[ ]]], then the constructed structure s has length |s| = |sh|+ p0. Thus, this minimum secondary
structure s would make a contribution to the coefficient at z|s| = z|sh|+p0 to a generating function in which
z marks size.
Furthermore, as the type 1 shape sh is generated by the morphism h1 for any secondary structure s′ which
differs only in the lengths of the unpaired and paired regions from the minimum secondary structure s, the
shape sh must make a contribution to the coefficient at z|sh|+p0+p of generating function M1(z) for each
p ≥ 0. In fact, if the underlying context-free grammar G1 generates a single type 1 shape sh, then sh must
imply a term ∑

p≥0

z|sh|+p0+p =

∑
p≥0

zp

 · z|sh|+p0 =

∑
p≥0

zp

 · z|s| =
1

1− z
· z|s|

to generating function M1(z).
Due to these observations, it is easy to see that we first have to multiply a factor z inserting a single-stranded
region of length 1 to each summand on the right-hand sides of system (1) that correspond to a rule of G1 that
generates a pair of brackets11 [[[ ]]] representing the type 1 abstraction of a hairpin loop. By multiplying these
factors, we ensure that the considered shape sh contributes to the coefficient at z|sh|+p0 = z|s|. Second,

11Within our grammar, the rule B → ε generates from a sentential form . . . [[[B]]] . . . such a pair of brackets and therefore has
to be weighted by a factor z.
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we obviously have to multiply the right-hand side of the first equation of the resulting modified system (1)
by the factor 1

1−z representing an arbitrary blow-up of size. The final system of equations is then given as
follows:

M1(z) =
1

1− z
· (A(z) + z),

A(z) = C(z) · z2 ·B(z) ·D(z),

B(z) = z · 1 + C(z) · z2 ·B(z) ·A(z) + z2 ·B(z) · (2 · z + z2),
C(z) = 1 + z,

D(z) = 1 + z + A(z),

It has to be solved for M1(z) to obtain a closed form of the desired generating function M1(z).
Now, after the previous discussion, it should be clear that when we are assuming variable minimum lengths
minLladder and minLhairpin for helical regions and hairpin loops, respectively, we have to consider the
following system, which can immediately be obtained from the previously presented one:

M1(z) =
1

1− z
· (A(z) + z),

A(z) = C(z) · z2·minLladder ·B(z) ·D(z),

B(z) = zminLhairpin · 1 + C(z) · z2·minLladder ·B(z) ·A(z) + z2·minLladder ·B(z) · (2 · z + z2),
C(z) = 1 + z,

D(z) = 1 + z + A(z).

In the same way, we can easily construct the corresponding four systems of equations for the remaining four
different shape abstraction levels i ∈ {2, . . . , 5}. These four systems are given as follows:

• Type 2 shapes:

M2(z) =
1

1− z
· (A(z) + z · 1),

A(z) = z2·minLladder ·B(z) ·D(z),

B(z) = zminLhairpin · 1 + z2·minLladder ·B(z) ·A(z) + z2·minLladder ·B(z) · (2 · z + z2),
D(z) = 1 + A(z).

• Type 3 shapes:

M3(z) =
1

1− z
· (A(z) + z · 1),

A(z) = z2·minLladder ·B(z) ·D(z),

B(z) = zminLhairpin · 1 + z2·minLladder ·B(z) ·A(z) + z · z2·minLladder ·B(z),
D(z) = 1 + A(z).

• Type 4 shapes:

M4(z) =
1

1− z
· (A(z) + z · 1),

A(z) = z2·minLladder ·B(z) ·D(z),

B(z) = zminLhairpin · 1 + z2·minLladder ·B(z) ·A(z) + z · z2·minLladder ·B(z) · z,

D(z) = 1 + A(z).

• Type 5 shapes:

M5(z) =
1

1− z
· (A(z) + z · 1),

A(z) = z2·minLladder ·B(z) ·D(z),

B(z) = zminLhairpin · 1 + z2·minLladder ·B(z) ·A(z),
D(z) = 1 + A(z).
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Note that now, the cases of type 3 and type 4 shapes differ, since the structural identical shapes of both
abstraction levels possess different preimages.
Now, for each i ∈ {1, . . . , 5}, we can solve the respective system for type i shapes for the variable Mi(z).
This way, we obtain the generating functions Mi(z,minLladder,minLhairpin), 1 ≤ i ≤ 5. Applying Darboux’s
theorem (with the choice m = 0) and computing series expansions of the resulting asymptotics about n →∞
afterwards, we obtain the asymptotics for mi(n, minLladder,minLhairpin), 1 ≤ i ≤ 5, as given in the theorem.

�

Remark 4.1 Note that building on Remark 3.1, the inflation of shapes in order to recover its structural
parents again could have been traced back to appropriate substitutions for a multivariate generating function
derived from G1. Like before, this would yield the supercritical case of singularity analysis explaining the
constant pattern of all the asymptotics given in Table 2.

To be able to quantify the reduction of the search space when using the concept of abstract shapes, we have
to consider the following result:

Theorem 4.2 Under the assumption of each possible combination of a minimum hairpin loop length
minLhairpin ∈ {1, 3} and a minimum helix length minLladder ∈ {1, 2}, the resulting asymptotical numbers
s0(n, minLladder,minLhairpin) of secondary structures (type 0 shapes) of size n, n → ∞, are those given in
Table 2.

This theorem can easily be proven using the same techniques as before. Furthermore, most (if not all) of
the asymptotics presented can be found somewhere in the literature. Accordingly, we omit a proof.

5 Discussion
Now, we are finally able to discuss and compare the derived results (where primary structure is not con-
sidered). Later on, we will discuss why the derivation of similar results under the assumption of a more
realistic model (which takes primary structure into account) remains on open challenge.

5.1 Abstract Shapes – Combinatorial Point of View
Considering Table 2, it is easy to observe that all asymptotics grow exponentially in n, where the base of
the exponential growth of the number of secondary structures of size n is significantly larger than that for
the different types of shapes – as expected.
Next, we want to compare the number of secondary structures of size n to the number of different type i
shapes that are morphic images of those secondary structures, for every i ∈ {1, . . . , 5}. Therefore, for each
of our four possible choices of minLladder and minLhairpin, we consider a plot containing all the resulting
asymptotics for s0(n, minLladder,minLhairpin) and mi(n, minLladder,minLhairpin), 1 ≤ i ≤ 5. As all these
asymptotics grow exponentially in n, it is appropriate to plot them using a logarithmic scale. The resulting
plots are shown in Figure 3.
It can easily be seen that the derived results are conform to the definition of type 1 shapes as the most
accurate and of type 5 shapes as the most abstract shape type. Moreover, there is the expected order of
graphs, i.e. the different shape levels are in fact ordered by their degree of abstraction. Furthermore, the
consideration of the logarithmic plot for the choice of minLladder = minLhairpin = 1 shown in the upper
left corner of Figure 3 leads to the conclusion that abstracting from loop and stack lengths (mapping
secondary structures to type 1 shapes) is not only the first, but also the biggest step for reducing the search
space. Additionally, abstracting from single-stranded regions in multiloops and exterior loops (difference
from type 1 to type 2 shape abstractions) yields only a smaller but still comparatively large additional
reduction. However, abstracting from bulges interrupting ladders and single-stranded regions in interior
loops (difference from type 2 to type 3 shape abstractions) results in a search space reduction of similar size
as the previous one. The definitely smallest step is made when reducing the search space by only partially
abstracting from nesting of helices, more precisely by combining nested helices only if the nesting is due to
an interruption by a single bulge (difference from type 3 to type 4 shape abstractions). Also a significant
but comparatively small final reduction of the search space is reached by additionally abstracting from
nesting of helices caused by interior loop interruptions and hence combining all nested helices (difference
from type 4 to type 5 shape abstractions). As expected, the other three plots shown in Figure 3 lead to
similar conclusions.
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Figure 3: Asymptotics of the number s0(n, minLladder, minLhairpin) of secondary structures of size n and of the
numbers mi(n, minLladder, minLhairpin) of different type i shapes, 1 ≤ i ≤ 5, that are morphic images of
secondary structures of size n, for each possible combination of minLhairpin ∈ {1, 3} and minLladder ∈ {1, 2},
respectively, logarithmically scaled.

Furthermore, considering all four plots shown in Figure 3, we observe that the reduction of the search space
is maximal for minLladder = 2 and minLhairpin = 3. Consequently, the maximum reduction of the search
space is reached for the most realistic secondary structure model.

5.2 Taking Primary Structure into Account
In the previous section, we have considered all secondary structures of size n, i.e. all possible two-dimensional
foldings, under a pure combinatorial model. That way, primary structure has completely been disregarded.
A more realistic consideration should start with a random primary structure s of size n, considering only
those secondary structures that are compatible with s according to base pairing. It would then be most
interesting to apply shape abstractions to those random foldings and to determine their quantitative be-
havior. Accordingly, Giegerich and co-workers introduced the terms (concrete) folding space and (abstract)
shape space which can be defined as follows [GVR04]:

Definition 5.1 For a given RNA sequence (primary structure) s, its (concrete) folding space F (s) is the set
of all legal secondary structures according to the rules of base pairing. For each i ∈ {1, . . . , 5}, its (abstract)
shape space is Pi(s) = {hi(x) | x ∈ F (s)}, where hi : Ss → Si is the morphism mapping secondary structures
to type i shapes, 1 ≤ i ≤ 5.

A well-known procedure to keep track of primary structure in enumeration of secondary structures is to
make use of the concept of stickiness. Assuming that a random primary structure is generated according to
a Bernoulli experiment, where symbol X shows up with probability pX, X ∈ {A,C,G,U}, the probability
p that two random nucleotides may have a hydrogen bond is given by 2(pApU + pCpG) (Watson-Crick
pairings only). This probability is usually called stickiness and of course can easily be adapted to further
notions of complementarity. The interesting point about this model is its easy translation into enumeration
procedures. Multiplying each terminal representing a paired nucleotide within our grammars by √pz instead
of z introduces generating functions whose coefficients are the expected number of secondary structures
compatible with a random primary structure (see [Neb04] for details). This provides asymptotic results
for the expected size of the folding space which we present in the appendix. From a formal point of view,
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the same could be done for shapes, weighting each [[[ and ]]] by √p. However, this procedure makes no sense
because of the following reasons:
When weighting a pair of corresponding brackets [[[ ]]] within a shape by p, this – explained intuitively –
corresponds to a statistical test which asks for the complementarity of two random nucleotides. However,
if this test fails this does not imply that the shape considered may not be compatible with the primary
structure at hand. It only says that we might have to shift the location of one or both brackets along the
sequence of bases. Consider as an example the primary structure CCCCCGGGGG. Of course, we cannot
locate a pair of brackets [[[ ]]] of a shape within the block of Cs or the block of Gs, but obviously it is possible
to assign a position to each bracket such that the corresponding symbols match.
Thus, to consider primary structure in context of shape abstractions, we would have to take care of all
alternative positionings of the bracket symbols of the shape along the primary structure (recall that shapes
abstract from the concrete position of helices). The number of these obviously grows when the sequence gets
large compared to the size of the shape and we have to expect that finally, the probability for a shape to be
compatible to a random sequence converges to 1. At the moment, it is not clear what the right analytic tool
should be for such a study (generating functionology seems unable to capture such a "shifting" constraint).
However, we want to stress that a very interesting challenge is discussed here. Besides all progress made
by this and further studies, determining the expected size of the shape space is the problem relevant for
algorithms such as probabilistic shape analysis [VGR06], where for card(Pi(s)) the (unknown) number of
type i shapes for a primary sequence s, a runtime of order O

(
card(Pi(s)) · |s|3

)
shows up. Thus, a solution

to this problem can be used to determine upper bounds to the size of sequences one can analyze in practice.
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Only Watson-Crick Base Pairs Watson-Crick and Wobble GU Pairs
(p = 1

4 ) (p = 13
50 ) (p = 3

8 ) (p = 19
50 )

minLladder = 1 1.86603n · 1.95947 · n−3/2 2.04101n · 1.6374 · n−3/2

and
minLhairpin = 1 1 .88163n · 1 .92488 · n−3/2 2 .04727n · 1 .6281 · n−3/2

minLladder = 1 1.72139n · 1.54195 · n−3/2 1.85479n · 1.22479 · n−3/2

and
minLhairpin = 3 1 .73334n · 1 .50771 · n−3/2 1 .85954n · 1 .21569 · n−3/2

minLladder = 2 1.36247n · 5.8205 · n−3/2 1.49265n · 4.16417 · n−3/2

and
minLhairpin = 1 1 .37366n · 5 .62474 · n−3/2 1 .49747n · 4 .12169 · n−3/2

minLladder = 2 1.33089n · 5.11834 · n−3/2 1.44358n · 3.45373 · n−3/2

and
minLhairpin = 3 1 .34064n · 4 .92109 · n−3/2 1 .44773n · 3 .41124 · n−3/2

Table 3: Asymptotics for the expected sizes of the folding space for a random primary structure s of size n assuming
a uniform distribution of the bases A, C, G, U (results in roman) or the skewed distribution pA = pU = 2/10,
pC = pG = 3/10 (results in italics), a minimum hairpin length minLhairpin ∈ {1, 3} and a minimum ladder
length minLladder ∈ {1, 2}. Stickiness p = 1/4 resp. p = 13/50 corresponds to Watson-Crick parings only,
assuming a uniform resp. the skewed distribution. Allowing wobble GU implies p = 3/8 resp. p = 19/50.

6 Appendix
During our investigations, we have computed precise asymptotics for the size of the folding space F (s) for
different models of secondary structures. The models differ with respect to structural restrictions (minimal
length of hairpin loops, isolated base pairs) and the complementary assumed (Watson-Crick pairings only,
wobble GU pairs allowed), expecting a uniform distribution for the bases or a skewed one (pA = pU = 2/10,
pC = pG = 3/10), according to the experiments performed in [GVR04, VGR06].
Even if they were of no use for our investigations related to abstract shapes due to the problems reported
when analyzing shape spaces, we expect those results to be of use for the future and therefore decided to
present them in this appendix without proof. Few of those results can already be found in the literature
(see e.g. [Neb04]), but there does not exists such a complete presentation.

Theorem 6.1 Considering a uniform distribution of the bases A,C, G and U resp. the skewed distribution
pA = pU = 2/10, pC = pG = 3/10, regarding Watson-Crick pairings only or allowing wobble GU pairs and
under the assumption of each possible combination of a minimum hairpin loop length minLhairpin ∈ {1, 3},
and a minimum helix length minLladder ∈ {1, 2}, the asymptotic expected folding space sizes card(F (s)) for
a random primary structure s of size n, n →∞, are those given in Table 3 shown in roman resp. italics.
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