But: Aho-Corasick creates search term tree of size O(m),

m:= > ... |Pil, in time O(m), and searches in time O(n),
n:=|T|.

Suffix tree has size O(n), construction time O(n) and search time
O(m).

= If all P; together are longer than the text, the suffix tree
solution needs less space but more time (preprocessing ignored). If
the set of the strings is shorter than the text, the Aho-Crasick
needs less space but more time.

= We observe a place/time-trade-off, as no solution is superior in
place and time consumption at the same time.

Substring Problem for a Set of Texts:

Look for string P in a set of texts 7 := {T,; | 1 </ < N}.
Example: Newly sequenced DNA fragment (P) is to be searched

amongst DNA sequences in the database (7°) (ldentification by
mitochondrial DNA).

Generalized compact suffix tree: compact suffix tree for text

T = T1$172%5- - Tadn (aII $; different).

Leaves are labeled with pairs (text, position), symbols following an
end mark are removed (as the $; are different, this only happens
at leaf edges).

So: Create generalized suffix tree for T’ in time and space
O(|T’|) and traverse along P to solve the substring problem for
the given set of texts.

Dead end < P not contained.

Leaf < P contained exactly once (label identifies text and
position).

Internal node < P contained multiple times (visit all leaves in
time proportional to number of occurrences).

http://www.echalk.de
http://www.inf.fu-berlin.de/~fland
http://www.inf.fu-berlin.de/~knipping
http://www.inf.fu-berlin.de/~rojas
http://www.inf.fu-berlin.de/~tapia

Longest Common Substring:

Search a longest substring, common to all words in

T ={T,| T, e, 1<i<N}.

Example: Identify important and thus in related organisms
mutationless regions of DNA.

Solution: construct generalized suffix tree for 7.

Inner node x corresponds to

» prefix of a suffix of only one of the T; (all leaves in the
subtree with root x belong to the same T;), or

» prefix of a suffix of multiple texts (leaves in the subtree with
root x belong to different T;).

Thus we_label each internal node x with the set of text indices
appearing in the subtree with root x (This can e.g. be achieved by
traversing the tree in postorder and labeling each node with the union of the
labels of its children).

Now only such nodes are solution candidates that are labeled with
the complete set {1,2,..., N} (the solution has to appear in each
of the T;).

From these nodes we chose one with maximum string depth, i.e. a
node y which has a path-label a of maximum length. This can be
done with a tree traversal..

Now the searched substring is given by «.

{1,2,3} E
3
a bca c 3o
(1.8) (3,5)
{1.2.3} g {1,2,3} {1,2,3}
(2,6)
$5,7a/%3] \chnbca %1/ 954 V\abaNbcach; 5 a
1,2 2.3 1,2.3
(2.5) { (%,4)(1.6) J (1,4) (2,3)(3.1) (1,1)1,7) { J
bea%s | 153 c$ 1 \%, c$1/ %o Vaby\bcach

(2,1)(3,3) (1.3)(2.2) (1,5 (2.4)3.2) (1.2)

Repeats in Words:

Definition
let TeX"and PeX™, 0<m<nandlet To:=%=T,.1,
$ & X. P is called an exact repeat of T, if and only if

(Fije0:n=1))(i #jAP= Tis1i4m = j+1._j+m)-

If additionally T; # T; and Ti pi1 # Tjymi1, P is called a
maximum repeat in 7.

This definition does not rule out the possibility of several different
maximum repeats starting at the same position of 7.

Example: In T = aabcbabacabcc, ab (because of
aabcbabacabcc) and abc (because of aabcbabacabcec) are
maximum repeats, one of which starts at 7.

Lemma

Let T be a word given as compact suffix tree and P a maximum
repeat in T. Then there exists an internal node x with path label
P in the tree.

Note that this lemma implies a maximum number of n — 1
maximum repeats in | € 2",

BQLJQIvSl \D VA UK Y(feq'(. > _-] vvxu\-a} 2A0¢, \)(v’&)icdz-—\e

—

Pos':‘\'.ovw« N] ;. AN 0{«\& F lO@j-n/\ﬁ\'.‘

_L p
I Y2 VK o+
P

P
= 3 24t VovTe \edoae gu{ frie Vo~ T A M‘f} F Q(jﬁ“\“sw

\w\. l?)auwx :
P

A S

Definition
Given a compact suffix tree t for text T an internal node x of t is

called left divers, if the subtree with root x contains two leaves

with labels i and j for which T; 1 # T;_1 holds (Remember that the

label of the leaves denotes the position in the text where the respective suffix
starts).

Theorem
Let T € X" be given as compact suffix tree. Then P € X" is a

maximum repeat in T, if and only if traversal along P leads to a
left divers internal node.

As a node is left divers if and only if it has at least one left divers
child the left divers nodes can be determined in linear time
starting at the fathers of the leaves.

Thus we have found an efficient procedure to find the maximum

repeats of a text.

Alignments

Motivation: Data in computational biology is gained from
experiments = flawed data.

To e.g. search for genes we must not look for exact repeats but
multiple occurences of similar words.

How can the similarity of words be formalized?

We start with the case of two words.

Pairwise alignments

Consider words Monkey and Money. These are obviously similar as

Monkey
Mon—ey

Consider Money and Honey:.

Money
Honey

We call these constructions an alignment of the words involved.

Definition

Let S€X"and T € X" and let — & 2 be a so called gap
symbol. Furthermore let ' == ¥ U {—} and h: (¥')* — L* the
homomorphism induced by h(a) = a for a € ¥ and h(—) = . An
alignment of S and T is a pair (S’, T') of words over ¥'satisfying
the following conditions:

1. |S'| = |T'| := 1> max(m,n),
2. h(§)=SAKT)=T,
3. (Bie [L:M)(T] =S = ~).

We take our descriptive representation as 2 x /-matrix over
Y U{-}.

In this matrix the following kinds of columns may occur:

Insertion: The upper word has a gap — in the column.

Deletion: The lower word has a gap — in the column.

Match: Both symbols in the column are the same

Substitution: None of the words has a gap in the column and the
symbols do not match.

= We may consider an alignment as generating process creating
the lower word from the upper one.

Definition

Let S and T two words over 2, let p: >~ x >~ — Q and g € Q.
The scoring 0 of an alignment (S’, T') of length | is defined by
column at first: For x,y € ¥ let §(x,y) := p(x,y) and

d(—,y) = 0d(x,—) := g. The scoring of the complete alignment is
then given by the sum of the scorings of its columns

5. T):=) 4. T)).

1<i<|

Furthermore a scoring 0 is always provided with an optimisation
goal goals € {min, max}.

For the function p usually p(a, b) = p(b, a) for all (a,b) € X2 is
required.

Definition

Let S and T two words over ¥ and 0 an alignment scoring. The
similarity sims(S, T) of S and T wrt. ¢ is the scoring of an
optimal alignment of S and T, I.e.

sims(S, T) := goals{d(S’, T') | (§', T") is alignment of S and T }.
If the choice of & is obvious from context we will omit the index.

How should p, g and the optimization goal be chosen?

Edit distance: Counts the number of insertions, deletions and
substitutions needed at minimum to transfer one word into the
other.

= p(a,b) =1 for a+# b, p(a,a) =0 and g = 1 with optimization
goal min.

Alternative: Let p(a,a) =1, p(a, b) = —1 for a # b, and
g = —2, maximizing.

Global alignments

We talk of global alignments if we consider the similarity of two
words. On the opposite /ocal alignments are used to find similar
substrings.

Here: Solution by dynamic programming from Needleman and
Wounsch (1970). We assume optimization goal max.

If S X™and T € 2" are given and ¢ is counted as a prefix, there
are m + 1 possible prefixes of S and n + 1 possible prefixes of T.

= Create (m+ 1) x (n-+ 1) matrix M of similarities of all pairs of
prefixes.

Entry (we assume line numbers and column numbers starting at 0) M,-_J-
represents the scoring of an optimal alignment of Sq; and To .
M. 1s the scoring of the global alignment.

The scoring of an optimal alignment of Sy ; and the prefix € of T
is obviously sims(So;,e) =g -1, 0 < i < m, (i deletions for Sp; —

£).
Analogous the optimal alignment of = and Ty is rated
sims(e, Toj) =g-j,0<j <n.

Dynamic programming: Find the scoring of an optimal alignment
of 5p; and Ty assuming the scorings of optimal alignments of all
pairs of shorter prefixes are known.

Two possibilities for the last column of the alignment of 5;; and
Tl_ji

> It consists of symbols S; and T; or

» exactly one of the rows ends with the gap symbol —.

ol

In each of the cases the scoring results from the scoring of an
alignment of shorter prefixes plus the scoring of the last column:

4

ff.mé'(sl,f—la T1j)+ g,

deletion

sims(S1.i, T1j-1) + &,

sim(g(Sl,,-, Tlﬁj) = max<{ ™ (- ' V_J) d (1)
_ Insertion

sims(Syi—1, Trj—1) + p(Si, T) -

match /substitution

\

First row and first column already initialized.
= M can be filled by row or by column since we only need M;;_;,
M."—l,j and Mi—l,j—l to determine M,'J.

S\To 1l 2 -1 n
0////4/t(l(L£(LL
/

(

2(

,I

4

(

-
f.—].(

i | (

(

(

4

m| ’ /’//,/

Each path through M starting at My and ending in M,, ,, and
only stepping to the neighbors to the right, below or to the right
and below corresponds to an alignment of S and T.

A step
» to the right corresponds to an insertion,
» down corresponds to a deletion,

» down and to the right corresponds to a match or substitution.

This observation can be used to determine the optimal alignment
computed in M,, B
In each cell of M store, which of the alternatives from equation
(1) contributed the maximum. If there is no unique source of the
maximum any of the sources can be chosen.

Starting in M, , we traverse M along the path saved this way.

The alignment is generated from right to left, a step
» to the left corresponding to an insertion,
» up corresponding to a deletion,

» up and to the left corresponding to a match or substitution
depending on if the symbols match.

Running time: ©(m - n).

Example: S = AAAU and T = AGU, p(a,a) =1, p(a,b) = —1
fora# band g = —2.

S U € A G U Similarity: M, 3 = —1, three
alignments with similarity
e| 0 |—-2|—-4]| -6 —1:
T AAAU
Al =2 14\ ~11] -3 —AGU
I
Al —-4|-1] 0 | =2 AAAU
4|\ A—GU
Al—-6|-3]|-2|-1 AAAU
AG—-U
U|-8|-5|—-4]|-1

Note that there may be exponentially many optimal alignments
(e.g. for S = A?" and T = A" there are (2:) optimal alignments),
so it is not recommended to output all solutions in an algorithm.

Remark: M may also be represented as a graph, the
so-called edit graph G = (V, E):
» Vertex = Entry in M (V = {0,...,m} x {0,...,n});
» Edges = Dependencies of the nodes according to equation
(1) (Edge u — v < v needs u to be computed).

Labeling: Edges (/,j) — (i + 1,j) and (i,j) — (i,j + 1) with g,
Edges (i,j) — (i + 1,/ + 1) with p(S5;41, Tj41).

=~ Construction of an optimal alignment < Searching a path with
maximum weight.

Local and semiglobal alignments

Definition

Let S€ Y™ and T € ¥" and an alignment scoring o with
optimization goal maximization be given. A local alignment of S
and T is a (global) alignment of substrings S:=S ., and

T = T, . An alignment A := (S', T') of substrings S and T is

JiJz-
an optimal local alignment of S and T wrt. 9, if

6(A) = max{sims(S, T) | S is substring of SAT is substring of T}.

Application: Comparison of unknown DNA or protein sequences.
(Often in such sequences only substrings are similar.)
No minimizing!

Example: S = AAAAACUCUCUCU, T = GCGCGCGCAAAAA,
matches rated +1, substitutions rated —1 and gaps rated —1.
In this case the optimal local alignment is

AAAAA(CUCUCUCU)
(GCGCGCGCO)AAAAA ’

with scoring 5. (Strong emphasis of the parts in which both words
match.) The optimal global alignment

AAAAACUCUCUCU
GCGCGCGCAAAAA

on the other hand is not very significant.
Smith and Waterman 1981: Compute an (m+ 1) x (n-+ 1) matrix

M, where M; ; gives the maximal scoring of an alignment of a
suffix of 5;; and a suffix of T4 :

st
N
A
//

Mf—lJ —|_ g:' A
M;:_1+ g,
M. i = max H , N7
J Mi_1j-1 + p(Si, T;).) ZEN
0, & N A\

The first line and first column of M (corresponding to the empty
word) can obviously be initialized with 0 as an alignment of the
empty word with the empty word with scoring 0 is always possible.

The scoring of an optimal local alignment is now given by the
maximum entry of M. The indices of this entry give the end
positions of the alignment in S and 7.

Edit graph: Add edges with weight 0 from vertex (0,0) to every
other vertex and from every other vertex to (m, n). Again we
search a maximal path from (0,0) to (m, n).

Semiglobal alignment: Global alignment with free gaps at
beginning or end.

There are several variants depending on the location where gaps
are free (beginning, end or both). If e.g. gaps at the end of one
word and at the beginning of the other word are free we can find
an approximative maximal overlapping of the words.

From an algorithmic point of view all variants can be reduced to
global alignments.

We will now discuss the different cases for S € > and T € X",

Free gaps at the end of S: If an alignment (S', T") of S and T
of length / contains gaps to the right of symbols S,,,, there exists
1 <j < I satisfying T/ =5, and 5/, | contains only gaps.

If gaps at the end of S are rated O their consideration leaves the
scoring of the alignment unchanged. Thus it is sufficient to find
the best alignment of S and a prefix of 7. Such alignments are
rated in the last row of M in our algorithm.

Hence the scoring of the best semiglobal alignment of S and T is
given by the maximum entry in the last row of M.

Free gaps at the end of T: Analogous to the above
considerations we find the maximum entry in the last column of
M to give the scoring searched for.

Free gaps at the beginning of S: As gaps at the beginning of
S do not affect the scoring this case corresponds with an optimal
alignment of S and a suffix of T.

By initializing the first row of M with O our method finds the
searched scoring since instead of scoring the alignment of the
prefix € of S with Tg; with g - we can now ignore the first
symbols of T free of charge.

The algorithm will then choose the 0 in My if T;.; , matches S
best.

Free gaps at the beginning of T: Analogous to the previous
case we initialize the first column of M with 0.

Generalized scoring functions

Scoring of gaps: When considering biological sequences an
alignment having several gaps in one block should be rated better
than one having the same number of gaps spread around.
Definition

Let S and T words and let (S’, T') an alignment of S and T. A
substring S! 4 i, = —" with S| # — # S/, .| (resp. a substring
Tl = —"with T/ # —# T/) is called gap of length k.

Affine gap scoring: Rate gaps of length k by —(p + ok) instead
of k- g, p,o > 0 chosen appropriate.

Here p penelizes general existence of a gap, o gives a contribution
proportional to gap length.

Affine gap scoring can be evaluated using dynamic programming,
the recursions get however much more complicated.

