Shotgun sequencing and fragment assembly:

Definition

Let D be a DNA molecule to be sequenced and S = {sy,...,s,}
the set of words (fragment sequences), observed at a shotgun
sequencing of D. Then the fragment assembly problem is to
determine (algorithmically) the arrangement of the words from S

corresponding to their original positions in D.

Solution of the fragment assembly problem:

1. Overlap: In this phase the possible overlaps of pairs of words
from S are determined. They do not have to be exact
prefix-suffix pairs but alignments with great similarity may
also be used.

2. Layout: From the result of the first phase now an
arrangement (similar to a semiglobal alignment) of the words
from S is designed, representing the arrangement of the
fragments in D. The structure resulting from the overlaps is
called Layout.

3. Consensus: As the layout usually contains several fragments
overlapping at a given position of D in the final step it has to
be decided, which symbol is chosen. This can e.g. be done by
majority voting.

Collection of DNA fragments

_—— = —

-~
s — ~ st
, N = | pairwise overlaps
;T " of all fragments
{

determine good layout of fragments

Layout —

ey

determine consensus C

A

/majority voting
W

http://www.echalk.de
http://www.inf.fu-berlin.de/~fland
http://www.inf.fu-berlin.de/~knipping
http://www.inf.fu-berlin.de/~rojas
http://www.inf.fu-berlin.de/~tapia

consensus A

Sources of errors and problems:
> sequencing errors,
creation of chimeras,
uncovered parts (toxic effect of a fragments wrt. host),

orientation (s; or complement reverse to s;?),

Yy v v Y

repeats (of (almost) identical substrings) (overlap or not?).

Shortest superstrings

We create as layout an overlapping of the fragments that implies
a sequence for D as short as possible.

Formally we are looking for a word ws containing all s; € S
(superstring for S) for S = {s1,...,s,} a subword free set of

words. We call this problem the shortest common superstring
problem (SCSP).

Another view at the problem is given by the notion of compression:

Definition
Let ws a superstring for set S = {s,...,s,}. The compression of
ws Is defined by

comp(ws) = Z si| | — [ws].

1<i<n

Intuitively comp(ws) is the number of symbols that ws saves
compared to the trivial superstring s; - s, - - - s,,.

Correspondingly the maximum compression common superstring
problem (MCCSP) is the problem of finding algorithmically a
superstrings for S with maximal compression.

Obviously: Optimal solutions for SCSP and MCCSP are the

same.

But: Performance guarantees can not be exchanged between the
problems.

Definition
Given a set S := {s1,5,...5,}, n > 0, of words. If there are
decompositions of s;,s; € S satisfying
X
> S5; = XY,
> sj = yz, \ l 'l]’ e
> X #¢c and z # ¢, 7 =

> |y| maximal with these properties,

y is called overlap of s; and s; (notation Ov(s;,s;)). The Merge
< s;,s; > of s; and s; then is the word

< §j,S5j > = XYz,
and we call x prefix of the merge < s;, s; > (notation Pref(s;,s;)).
Definition
Let S = {sy,...,s,} be a set of words and G the digraph with

vertices S and edges S x S. The overlap graph OG(S) of S is the
digraph we get from marking G according to

ov: (§xS)—Ng: ov(s;,s;) :==|0v(s;,s;)|.
If we mark G according to
pr: (SxS)— Ny: pr(s;,s;) .= |Pref(si,s;)],

we get the distance graph of S (notation DG(S)).

Example: S = {aabca, aacab, aaddd, ababaa, caba }, table shows
edge weights ov(x,y) | pr(x,y):

Yy
X aabca | aacab | aaddd | ababaa | caba
aabca || 1|4 | 1|4 | 1|4 114 [2]3
aacab || 0|5 | 0|5 | 0|5 213 |32
aaddd 0|5] 0|5 0|5 0|5 |0]5
ababaa | 2|4 | 2|4 | 2|4 1|5 (0|6
caba 113] 1|3 1]3 3|1 |04

4

td

s

-

[4

X & ovo/(rf

Using our method from the exercises (9. Task) to find all pairwise

overlaps of words in S we can create the overlap graph for S in

time O(N - (log(N) + || 4+ n)), assuming S is a set of words over
Yand N:=) sl

Using pr(s;,s;) = |Pref(s;,s;)| = |si| — |Ov(s;, s;)| we get the

same running time for creating the distance graph.

Note that n> = O(N - n) and even n°> < n- N holds as by
assumption £ being a substring of every word can't be an element

of S.

Edge s; — s; in the overlap or distance graph can be identified
with merge < s;. 57 >.

= Path corresponds to series of merges of the words represented
by the nodes. E.g. for path s1,s5,.... 5,

—

< 5,%,...,5 >=
Pref (s1, s2) - Pref(sy, s3) -« - Pref(s,_1, Sk) * Sk.

A superstring for S then corresponds to a path through the graph
visiting each node exactly once, a minimal superstring (i.e. a
solution for SCSP or MCCSP) to a path with optimal weight (for
the distance graph this is the minimal weight).

= Correspondence of our problems and TSP!

Theorem
Dec-SCSP is NP-complete.

Approximation algorithm:

while |S|>1 do
Determine s;,s; €S, si#s;, with ...
.maximal overlap of all pairs in §5.
Set s’ :=<si,s;> and S=5\{s;,s;}U{s}.
return(s€S) //the only word remaining in S

This way the algorithm creates a hamiltonian cycle in the overlap
graph.

Example: S = {aabca, aacab, aaddd, ababaa, caba} (Graph see
previous example)

First choice: Two alternatives ((caba, ababaa) and (aacab, caba)).

We take (caba, ababaa) = merge < caba, ababaa >= cababaa
and S = {cababaa, aabca, aaddd, aacab}.

Second step: Combine aacab and cababaa to get aacababaa and

S = {aacababaa, aabca, aaddd}.

Third step: Pair (aacababaa, aaddd) has maximal overlap.
. € JaarahabaadAA aahkhr~al

Ny

——

————

£ | W e

Last step: Output aabcaacababaaddd of length 16 (being a
shortest superstring for the input considered).

Theorem
Assuming a constant size of the alphabet above greedy algorithm

given input S = {s,...,s,} takes running time in

O(N - (n+log(N))), N= 3>, i, lsil
Proof:

° M@w\s-"w‘/{{'.ov_ Ole“f\ G""fl-'ql"l O(}\/ (‘/\""Loj(lu)»

° Sm'&"ﬂc I/aV\,LV\. %Q«M, G\Q*«/?CHA(OL(M/oﬁ

()\'lrj‘\f\[aw\iow Cow\’\\"ﬁ (“433(“’\ Ao Guagvbe wad
belloua ks DNevey gﬂm‘«'@

O 3N)=0WN) ¢ Q ><7

S‘.
>/
s UNiov —F1yd 4 S
Velimdarn Vo L(\/Q:YQ-\

e Ma,v\/w\ovug.s VoA \/\u—\l-‘v\ d.,‘q» VUL* "UQ‘I}N VNWM"t

UQJ'O(«\ 0‘«71“;« (2% = \/\((Q f«o I-{;evq,}fe-\) "M
Ad e 2y X

Performance guarantees?

Example: Let S = {c(ab)™, (ba)™, (ab)"c}, m € N, the input for
our greedy algorithm. The pair with maximal overlap is given by
(c(ab)™,(ab)™c) so the algorithm does merge

< (c(ab)™, (ab)™c >= c(ab)™c.

The next iteration then processes set {(ba)™, c(ab)"c}.

As both possible pairings do not yield an overlap concatenating is

our only choice, resulting in the superstring (ba)”c(ab)™c or
c(ab)™c(ba)™ both of length 4m + 2.

It would have been better to first place the string (ba)” between
the words ¢(ab)™ and (ab)™c leading to the optimal superstring
ca(ba)™bc of length 2m + 4.

So the approximation rate of the greedy method for this example

is lim . o ;ﬁﬁ =2

We have hence shown that for the greedy algorithm there can be
no performance guarantee better than 2. It is widely believed that
this is the actual performance guarantee but none has yet been
able to prove this.

The following is proven:

Theorem
The greedy algorithm to compute a superstring is a
4-approximation algorithm for SCSP.

As mentioned above an optimal solution for SCSP is also an
optimal solution for MCCSP. However we do not yet know any
performance guarantee for the greedy algorithm wrt. maximizing
compression.

Theorem
The greedy algorithm to compute a superstring is a
3-approximation algorithm for MCCSP.

Proof:
p & s o?'}lw«qke Lésw"i
A Besbactbmys Jedes S Woomd i Oe wnd, @aceal als
Tedawt vy,

— Re’.hmi,(& (Sa,‘ .S,)

S <.
Tt > S S —>

O(.l’_ L\/a: 4‘__ . (<

COW‘f (Uo) = Z Zvg. OVQ*I&‘)S

}\‘/\q[Dj '{;\f AVS:)QLC Vo é‘(eed> : <gé S .)
,[" s T 7,‘
- '* 2-‘,5— COWF (LJS).

