Motif Statistics

Motivation: Molecular biology tries to establish relations between
chemical form and biological function.

One important “chemical form”: sequence data (DNA, RNA,
proteins).

Task: Discern signal from noise.

Here: Motifs (simple regular expressions) representing families of
similar (due to common ancestors) sequences;

Example (protein encoding):
[LIVM](2) —x — D — D — x(2,4) — D — x(4) — R — R — [GH]

What is the expected number of occurrences of a motif in a
random text?

Representation of motifs via finite automata (equivalent to
so-called regular expressions):

A deterministic finite automaton (DFA) A is given by a tuple
A=(S5,1,5,0,F) with

» S a finite set of states;

» X a finite set of symbols (input alphabet);
» sg € S the initial state;

» 0 :(S x X) > S the transition function;
» F C S set of accepting states.

Example: Automaton for
[LIVM](2) —x — D — D — x(2,4) — D — x(4) — R — R — [GH]
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Notation: For DFA A we denote by £(A) the set of words
accepted by A (language).

Remarks:
1. Motifs always describe a finite set of finite strings;

2. the language accepted by a DFA is not necessarily finite (but
the accepted strings are);

3. the methods we will consider here apply to every DFA thus
can also be used in connection with infinite languages.

Plan of analysis:
1. Design finite automaton that “reads” all words over X but
signals occurrence of motif;
2. translate automaton into generating function;

3. apply techniques from analytic combinatorics to determine
expected number of occurrences (and more).



Step 1:

» Given DFA A, modify it to accept X* - L(A); let
A = (5%, 55,0, F') be the resulting automaton.
» To mark all matches introduce new symbol m, setting
Y =X U{m}.
» Forall g € S" and all o € ¥ with §(q,0) = f € F' create
new state g, in S’ and set ¢'(q,0) := g, and ¢'(q,, m) := f.
» Forall f € F set §'(f,c) := s} (restart for next occurrence).

Example:
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Step 2: Here we can resort on CHOMSKY AND
SCHUTZENBERGER: Assuming ¥~ = {01,07,...,0, = m}

» for each state s; of DFA introduce (ordinary) GF S;;

» for each state s; we have
Si(zi,....z)=(14+) & zS(z,...,z) where term 1+
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Step 3: Now P(z, u) := So(zp1, zpo, ..., zp, 1, u) is the BGF with

» the coefficient at z” being associated with all accepted words
of length n (symbol m not contributing),

» assuming a BERNOULLI probability model (symbol o; shows
up with probability p;), and

» each occurrence of the pattern labeled by variable wu.

Example:
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From P(z, u) (for given motif (aka DFA)) we can easily compute
1. the probability of k occurrences in a text of length n;

2. the expected number of occurrences of the motif in a text of
length n;

3. the corresponding variance;

4. the limiting distribution.
Example (for 2.):
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