Motif Statistics

Motivation: Molecular biology tries to establish relations between
chemical form and biological function.

One important “chemical form™: sequence data (DNA, RNA,
proteins).

Task: Discern signal from noise.

Here: Motifs (simple regular expressions) representing families of
similar (due to common ancestors) sequences;

Example (protein encoding):
[LIVM](2) —x —D— D —x(2,4) — D — x(4) — R — R — [GH]

What is the expected number of occurrences of a motif in a
random text?

Representation of motifs via finite automata (equivalent to
so-called regular expressions):

Definition

A deterministic finite automaton (DFA) A is given by a tuple
A=1{5 7 55,0, F) with

5 a finite set of states;

A

A 4

J_ a finite set of symbols (input alphabet),

A 4

sy & 5 the initial state;
» 0 {5 2} 5 the transition function;
» [ 5 set of accepting states.

Example: Automaton for
[LIVM](2) —x — D — D —x{2,4) — D — x(4) — R — R — [GH]
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Notation: For DFA A we denote by (A} the set of words
accepted by A (language).

Remarks:
Motifs always describe a finite set of finite strings;

the language accepted by a DFA is not necessarily finite (but
the accepted strings are);

!, the methods we will consider here apply to every DFA thus
can also be used in connection with infinite languages.

Plan of analysis:
. Design finite automaton that “reads” all words over > but
signals occurrence of motif;
2. translate automaton into generating function;

i, apply techniques from analytic combinatorics to determine
expected number of occurrences (and more).



Step 1:
Given DFA modn‘y it to accept > * - L(A}); let
" } be the resulting automaton

To mark aII matches introduce new symbol 71, setting

Forall ¢ « 5" and all o ¢ > with 9(g.0) — F ¢ F' create

new state ¢, in 5" and set V'(q.o} :— g, and ¢'(q,. m) -

Forall ¥ « F set &'(f. =) — s (restart for next occurrence).
Example:




Step 2: Here we can resort on CHOMSKY AND
SCHUTZENBERGER: Assuming » '

for each state s; of DFA introduce (ordinary) GF 5;;

for each state s; we have

(1+) 7507y, ...,z ) where term 1
iff s, ¢ F. !’ al’,a’?.a{,"'
Remark: The resulting GF 5, is rational. ¢
> g,z
Example: {20

S1(22.222)=2S, (2,2, %) \f}[g‘]
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+205, (2.2,
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Step 3: Now P(z, u) — Solzpy, zpo. ..., zp, 1, 1) is the BGF with
the coefficient at 7" being associated with all accepted words
of length » (symbol m not contributing),

assuming a BERNOULLI probability model (symbol &; shows
up with probability p;), and

each occurrence of the pattern labeled by variable .

Example:

w L a_a._ .
LAsed = a5 anm S.=25.25, __‘75;—7§f —554

S, = 2.5, = 2.-2,5, =422, 5,

= 2,2,2,2.5,=2,2,2.,2,2,5,
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From P(z, u) (for given motif (aka DFA)) we can easily compute
1. the probability of & occurrences in a text of length »

2. the expected number of occurrences of the motif in a text of
length

3. the corresponding variance;

4. the limiting distribution.
Example (for 2.):
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