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Hand In: Until the end of the term (or Wed 12:00 for feedback in next meeting), in
box (hallway or desk), in person during the meetings, or via email.

This document provides you with a number of problems designed to help you deepen your
understanding of the material. Work on whichever problems you think are interesting
and can help you learn. We offer you to review your work and give constructive feedback –
all you have to do is hand your solutions in, either in writing or as email.

Note that this document is not yet complete and is probably going to be updated fre-
quently. We will notify you whenever we make significant changes. For reference, note
the date of this version in the upper right corner.

We list the most recent changes for your convenience:

04.11.2015 Fixes and one addition in chapter Flows & Matchings.

27.11.2015 Creates chapter Symbolic Method and moves problems there.
Changes citation style to be compatible with syllabus.
Adds a final exercise to chapter Compression.

16.12.2015 New warm-up exercise in chapter Symbolic Method.
Problems in chapters Symbolic Method and Random Generation are now up to
date.



String Matching

On the Prefix Function

Let P ∈ Σm. Prove the following properties of prefix function ΠP .

a) Lemma 6.4 [Neb12]

For all q ∈ {1, 2, . . . ,m},

Π?
P (q) =

{
k | k < q ∧ P0,k = P0,q

}
,

where Π?
P is the iterated prefix function (cf. Definition 6.5 in Nebel [Neb12]).

b) Korollar 6.6 [Neb12]

For all q ∈ {2, 3, . . . ,m},

ΠP (q) =
{

0, Eq−1 = ∅;
1 + maxEq−1; Eq−1 6= ∅,

where

Eq := {k ∈ Π?
p(q) | Pk+1 = Pq+1}

for q ∈ {1, 2, . . . ,m− 1}.

c) Denote with P r the reverse of P and let j ∈ [0..m] be arbitrary. If k is the largest
natural number properly smaller than m with Pj+1,m = P0,k für j ∈ [0..m], then

ΠP r (`) = m− j

for ` = (m− k) + (m− j).

Whenever an exercise states, “Develop an algorithm. . . ” (or similar), your
presentation should include a precise description of the algorithm as well
as arguments of correctness and an analysis of its (relevant) costs (such as
runtime, memory usage, . . . ).
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Rotation Matching

Develop a linear-time algorithm for the following problem:
Rotation Matching

Input: A,B ∈ Σn with n ∈ N and some alphabet Σ.
Question: Is there a k ∈ N0 so that

Ai+1 = Bs(i)+1 with s(i) := (i+ k) mod n .

holds for all i ∈ [0..n− 1]?
Determine an infinite family of worst-case inputs for your procedure, e. g. by giving a
scheme depending on n. How many symbol comparisons does your algorithm need on
these inputs?

Regular String Matching

We investigate a generalisation of the string matching problem. We now search for a
pattern (instead of a fixed string P ) which we will assume to be given as a regular
language L ∈ Σ∗. We will show that there are efficient algorithms for this problem as
well.
You can assume that L be given in one of the usual, finite representations, e. g. finite
automata, regular expressions or left-/right-regular grammars1.
Assume furthermore that L is fixed, i. e. the asymptotics in the problem statements below
do not depend on L resp. the size of its representation. Nevertheless, your algorithms
should work for any regular L!

a) Develop an algorithm that solves the following problem O(n) time:
Regular String Matching

Input: w ∈ Σn

Question: Does w match the pattern L, i. e. is w ∈ L?
b) Develop an algorithm for the following problem:

Regular Substring Matching

Input: Text T ∈ ΣN and regular language L ⊆ Σ∗

Output: The set of all substring matches of L in T , i. e.

ML(T ) = {(i, j) ∈ [1 : n]2 | i ≤ j, Ti,j ∈ L} .
1You remember from your formal language theory course(s) that these can all be derived from each
other efficiently.
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Your algorithm should run in time Θ(n+ k) where k = |ML(T )|. Note that since
Ω(n + k) is a trivial lower runtime bound you are looking for an asymptotically
runtime-optimal algorithm.

Less efficient solutions may yield partial credit depending on how far off they are.
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Compression

Compression algorithms have lots of parameters. Unless otherwise noted,
you can assume all those parameters to be arbitrary1 but fixed that encoder
and decoder have to agree upon for correctness.

On Decompositions

Recall the notion of exhaustive history as introduced by Lempel and Ziv [LZ76, p 76].
We call the corresponding decomposition of the input word w LZ77-decomposition (of
w).

Furthermore, Ziv and Lempel define a restricted variant of this decomposition in their
proof of Theorem2 in a later work [ZL78, p 533]. We consider the limit for n→∞ and
call the result LZ78-decomposition.

a) Give formal definitions of the LZ77- and LZ78-decomposition for arbitrary w ∈ Σ?,
respectively. Use modern notation like e. g. in the referenced literature [Neb12;
SW11].

What are similarities and differences between the two?

b) Give

(i) the LZ77-decomposition,

(ii) the LZ78-decomposition

(iii) and an arbitrary non-exhaustive history

of w = aaaaabbababaaabb.

c) Prove the following claims using the definitions and notation from a):

(i) Every w ∈ Σ+ has exactly one LZ77-decomposition.

(ii) Every w ∈ Σ+ has exactly one LZ78-decomposition.
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No Free Lunch

Prove the following no-free-lunch theorems for lossless compression.
a) For every compression algorithm A and n ∈ N there is an input w ∈ Σn for which
|A(w)| ≥ |w|, i. e. the “compression” is no shorter than the input.

b) For every compression algorithm A and n ∈ N,∣∣{w ∈ Σ≤n : |A(w)| < |w|}
∣∣ < 1

2 ·
∣∣Σ≤n

∣∣ ,
that is less than half of all inputs of length at most n can be compressed below
their original size.

As domain of (all) compression algorithms, we consider the set of (all) injective functions
in Σ? → Σ?.
The theorems hold for every non-unary alphabet; you can restrict yourself to the binary
case, i. e. Σ = {0, 1}, though.

Implementing LZ77

This exercise will lead you towards an efficient (w. r. t. runtime) implementation of the
LZ77-decomposition as defined in On Decompositions.
Note that practitioners will want to use constrained versions which get by with a constant
amount of memory for the price of worse compression rates.

a) As a first step, consider the following problem:
Longest Prefix Matching
Input: Text T ∈ Σn, pattern P ∈ Σm and index t ∈ [1..n].
Output: Length `max of the longest prefix of P which occurs in T “be-
fore” position t and its matching site, i. e.

`max := max
{
` ∈

[
0..min{n,m}

] ∣∣∣ ∃i ∈ [1..n− `] : i ≤ t∧Ti,i+`−1 = P1,`

}
and arbitrary

j ∈
{
i ∈ [1..n− `max] : i ≤ t ∧ Ti,i+`max−1 = P1,`max

}
.

Develop an algorithm that solves the Longest Prefix Matching problem in time
O(t + `max) using O(`max) memory2. Less efficient algorithms may yield partial
credit.
Hint: Some algorithms we discussed at the beginning of the course may be a good
starting point.

2Memory constraints are always meant in addition to the input.
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b) Develop an algorithm which computes LZ77(w) for w ∈ Σn in time O(Cn) with
C := |LZ77(w)| the number of phrases in the LZ77-decomposition of w.

You may use an algorithm as specified in a) as subroutine (even if you did not
come up with your own solution).

Bad Cases for LZ Compression

Find bad-case instances for LZ77, LZ78 and LZW, respectively!

Specifically, you are to define

• infinite classes of inputs

• for each parametrization of the respective algorithm

• that result in bad compression ratios.

We are looking for a formal definition and symbolic calculations for the compression
ratios!

Lower bounds (as long as they are non-trivial and interesting) and asymptotic results
are fine.

Why is this hard? Can you prove that you have found worst-case instances? Why not?

Hint: It may be useful to actually implement the algorithms.

7 / 26



Flows & Matchings

Even and Odd Flows

Let G = (V,E) be a simple graph with integral edge capacities1 c : E → N.

Prove or disprove:

a) If all capacities are even numbers, i. e. c(E) ⊆ 2N = {2n | n ∈ N0}, then there is a
maximal (s, t)-flow f∗ with even flow values only, i. e. f∗(E) ⊆ 2N.

b) If all capacities are odd numbers, i. e. c(E) ⊆ 2N + 1 = {2n + 1 | n ∈ N0}, then
there is a maximal (s, t)-flow f∗ with odd flow values only, i. e. f∗(E) ⊆ 2N + 1.

Note: We continue flows f : E → R on sets of edges in an element-wise fashion, i. e.
f(A) = ⋃

e∈A{f(e)} for A ⊆ E.

Feasible Flows

In applications, we are often not interested inmaximal flows but rather if a given network
admits a certain (additional) amount of flow from certain sources to certain sinks. For
example, consider a wastewater system to which we add certain amounts of water (per
time) at storm drains and have to move it to treatment facilities.

Formally, we model this as a decision problem:

Feasible Flow

Input: Simple graph G = (V,E) with capacities c : E → R≥0 and excess
b : V → R.

Question: Is there a feasible flow f : E → R with

∀ v ∈ V. b(v) +
∑
e∈E

e=(u,v)

f(e) =
∑
e∈E

e=(v,u)

f(e) and (0.1)

∀ e ∈ E. 0 ≤ f(e) ≤ c(e) ? (0.2)

1Unless otherwise stated, we use capacity synonymous to upper capacity bound and assume that no
lower capacity bounds are given, i. e. l(e) = 0 for all e ∈ E.
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We call a node v ∈ V with positive excess b(v) > 0 a source and one with negative excess
b(v) < 0 – i. e. a node with demand – a sink.

Show that the Feasible Flow problem reduces to the Max-Flow problem. That is, de-
scribe an algorithm that solves Feasible Flow by calling an algorithm for Max-Flow as
subroutine.

Multi-Machine Scheduling

We consider a certain (class of) scheduling problem(s), i. e. the task of assigning “jobs”
to “machines” on a discrete time scale so that all jobs finish on time, subject to certain
constraints.

Multi-Machine Scheduling with Preemption (MMSP)

Input: Number m ∈ N and Tj = (rj , pj , dj) ∈ N3 with dj ≥ rj + pj for
j ∈ [1..n].

We call rj the release time, pj the processing time and dj the deadline of job Tj .

Question: Is there a scheduling of jobs T1, . . . , Tn on m identical machines
M1, . . . ,Mm, i. e. a mapping S : N× [1..m]→ [0..n], which fulfills the following
constraints?

i) No job starts early, i. e.

∀ j ∈ [1..n], k ∈ [1..m]. t < rj =⇒ S(t, k) 6= j .

ii) All jobs finish on time (and are not “overprocessed”), i. e.

∀ j ∈ [1..n].
dj∑

t=rj

m∑
k=1

[S(t, k) = j] = pj .

iii) At any given time, at most one machine can process the same job, i. e.

∀ j ∈ [1..n], t ∈ N.
m∑

k=1
[S(t, k) = j] ≤ 1 .

iv) At any given time, every machine can process only one job, i. e. S is indeed
a well-defined function.

Output: A schedule that is feasible in the above sense, if there are any.

Note that we have implicitly that

• the machines work synchronously in parallel,
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• any machine can process any step of any job and

• jobs may be preempted without cost, i. e. processing of any (unfinished) job can be
paused at any time and continued on any other machine;

these two properties in particular distinguish MMSP from other, harder scheduling pro-
blems.

a) Give a polynomial-time many-one reduction from MMSP to Max-Flow using (at
most) logarithmic space (in addition to input and output).

Note: This is possible because Max-Flow is log-space complete in P [GSS82].

b) Use the reduction from a) to develop an algorithm for MMSP. What is the (asymp-
totic) runtime of your algorithm?

c) What is the fastest known algorithm for MMSP? Compare its resource costs (in
particular runtime) with the algorithm from b).

Note: We expect you to do some independent literature research here. Make sure
to credit your sources according to academic standards.

Converting Flows to Cuts

The Max-Flow-Min-Cut theorem relates the flow values of maximal flows and the capac-
ities of minimal cuts; the optimal solution values of both problems coincide. However,
additional work is needed to compute the actual solutions—and we only considered flow
algorithms in class.

a) Design an algorithm for computing a minimum-capacity s-t-cut in the network
G = (V,E, c) from a maximum flow f∗ in G.

b) Assume you are given a network G = (V,E, c) and a minimum-capacity s-t-cut.
Can you use the cut for determining a maximum flow f∗ in G faster than solving
Max-Flow from scratch?

Invariants of Preflow-Push

The augmenting-path approach is related to the primal Simplex algorithm2 for solving
linear programs (LP): we start with and maintain a feasible solution, which is initially
suboptimal. This solution is successively improved until we reach optimality.

In this exercise, we show that the preflow-push approach resembles the dual simplex
method: we maintain a dually feasible solution, which in our case is an s-t-cut. This

2 For details on LPs and the Simplex algorithm(s) see any textbook on linear optimization, e. g.
Hamacher and Klamroth [HK00].
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dual solution is modified until it becomes (primally) feasible; here until the preflow
becomes a flow.
The original statement of the preflow-push algorithm does not explicitly maintain this
cut, therefore we augment the algorithm as follows.

We maintain a set S of nodes throughout the algorithm, which is initially S :=
{s}. The algorithm then invokes a sequence of relabel and push operations.
Each push moves some amount of flow over an edge (u, v) ∈ Ef of the residual
network Gf . After each such push-operation, we now check whether u /∈ S
and v ∈ S, i. e. whether the push was “into S”. If yes, we add to S all nodes
reachable from u in Gf (including u itself).

Show that the following properties hold:
(i) At any time, (S, V \ S) is an s-t-cut.
(ii) The capacity of the cut (S, V \ S) never increases.
(iii) If the current pre-flow f fulfills the flow conservation property then its value val(f)

equals the capacity c(S, V \ S) of the cut.

Nash Matchings

We consider the following refined bipartite matching problem.

Nash Matching

Input: Sets A = {a1, . . . , an} and B = {b1, . . . , bn} of players with rankings of
the individuals of opposite type.
That is, for each ai there is a total preference relation3 ≺ai ⊆ B × B, and
likewise for every bi, we have the relation ≺bi

⊆ A×A.
Output: A Nash-matching of A and B, which we define as a (bipartite) perfect
matching M ⊆ A× B that is stable, that is there is no pair of players (a, b) ∈
A×B for which the following holds:

There are a′ ∈ A and b′ ∈ B with a 6= a′ and b 6= b′,
(NM1) (a, b′), (a′, b) ∈M ,
(NM2) b ≺a b

′ and
(NM3) a ≺b a

′.

We say that “c prefers x to y” if (and only if) x ≺c y. Intuitively speaking, a Nash-
matching is one given which no two paired individuals agree that it would be preferable
to leave each other and form other pairs.

3The relations are total orders, i. e. any two elements b, b′ are either equal or b ≺ai b
′ or b′ ≺ai b.
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a) Show that there always exists a Nash-matching of A and B by describing an
algorithm for constructing such a matching.

You may skip the running time analysis of your algorithm, but make sure you
prove its correctness.

b) Prove or disprove:
For all n ≥ 2 there is a Nash-matching for some preference relation that contains
a pair (a, b), where a likes b least of all B-players and likewise b prefers all other
A-players to a.

c) Prove or disprove:
For all n ≥ 2 there is a Nash-matching for some preference relation that contains
players a ∈ A and b ∈ B which are both paired with their least preferred partners,
but they are not paired with each other.

d) Prove or disprove:
For all n ≥ 2 there is a Nash-matching for certain preference relations given which
no player is paired with its most preferred partner.

e) Prove or disprove:
For all n ≥ 2, every preference relation admits exactly one Nash-Matching.
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Random Numbers

Several exercises in this chapter are open-ended, and deliberately so. You
will have to do some research, form an opinion and present it clearly.

What is Randomness?

Read sections 3.3 and 3.5 of Knuth [Knu01].

a) Make sure you understand the truth, the fallacy and – optionally – the punchline
of the following comic strip:

http://dilbert.com/strip/2001-10-25
© 2011, Universal Uclick

b) Work on a random sample of size n = 5 of the given exercises. Hand in the solution
you would most appreciate feedback on.

Pseudo- vs True Randomness

Name usage scenarios in which you would prefer true random numbers over pseudo-
random numbers, and vice versa. Discuss your reasoning.
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Random Number Generation in Practice

a) Discuss the differences of the pseudo-random number generators

(i) java.util.Random,

(ii) java.util.SecureRandom and

(iii) Python’s random.py.

Note that you are expected to at least skim the sources.

b) Write a subtly flawed random number generator; the worse it performs, the better.

That is, the issue should not be completely obvious; an average programmer skim-
ming the code should be fooled. As a rule of thumb, you may want to make the
code look similar to the ones you investigated in a) (or any library PRNG).

Explain the flaw and the flavor of “bad” your are aiming for.

More exercises on random numbers will be coming. Until then, you can
try yourself on the exercise problems in the primary resources.
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Symbolic Method

The exercises in this chapter are intended to make you familiar with the
use of the symbolic method for specifying combinatorial classes. For all
exercises of type “Specify . . . ” you are expected to answer the following
questions:

• Do we deal with labeled or unlabeled atoms?

• Which atoms do we need and what sizes should they have?

• How can the given structures be constructed (recursively?) from
smaller parts?

– Briefly describe your idea. Pictures are very welcome!

– Make sure that the specification is complete and unambiguous,
i. e. every object has a unique construction.

– Give the (system of) symbolic equation(s).

• What is the generating function for the class, i. e. for the sequence of
numbers of objects of each size?

Warmup: Counting

Use the symbolic method to count the following sets of objects.

Hint: You may use the Mathematica function SeriesCoefficient (or equivalent func-
tions of other computer algebra systems) for this task. A simple version is available on
our website: http://wwwagak.cs.uni-kl.de/home/lehre/mathe-tools
(currently only in German; use button „Koeffizient“ in section „Potenzreihenentwicklung“)

a) Partitions of n = 41, i. e. multisets of non-zero natural numbers that sum to n.

For example, n = 4 has five partitions, namely

4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1.
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b) Compositions of n = 41, i. e. (ordered) sequences of non-zero natural numbers that
sum to n.

For example, n = 4 has eight compositions, namely

4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 3, 1 + 2 + 1, 1 + 1 + 2, 1 + 1 + 1 + 1.

c) Partitions of n = 41 with distinct parts, i. e. sets of non-zero natural numbers that
sum to n.

For example, n = 4 has two partitions with distinct parts, namely

4, 3 + 1.

d) (Extended) binary trees with 13 inner nodes.

For example, there are five extended binary trees with three inner nodes:

e) RNA secondary structures of length 21, modelled as words over the alphabet
{(, •, )}, satisfying the following conditions:

(1) The number of opening and closing parentheses is identical.

(2) No prefix of the word contains more closing parentheses than opening ones.

(3) The string ( ) does not occur as a substring.

We call a string satisfying (1) and (2) correctly parenthesized.

For example, there are the eight structures of length 5:

•••••, (•••), (••)•, (•)••, •(••), •(•)•, ••(•), ((•)).

Specifying Trees and Walks

a) Give a formal specification of the class T of (directed, rooted) trees, in which
every node has either 0, 1 or 2 children. In case of a binary node, the order of
the subtrees matters. We assume nodes of the same group (same degree) to be
indistinguishable.

The size |t| of a tree t ∈ T is the total number of nodes in t.
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b) Specify the class P of returning random walks with steps ↗, → and ↘, i. e. paths
on the two-dimensional grid Z2 starting in (0, 0) and ending in (n, 0) (n ∈ N).
Each single step of such a path can be either the vector (1, 1), (1, 0) or (1,−1).
Moreover, the path may never cross the x-axis, i. e. when the current point is (k, 0),
we may not make a step (1,−1).

The size of a path is the number of steps, or equivalently its length in x-direction.

Hint: Decompose paths according to the first step.

c) Consider the class T from a) again, with one difference: this time, we define |t| to
be the number of edges in the tree. Adapt your specification accordingly.

What can you say about the generating function and thus about the number Tn

of trees t ∈ T with n edges?

Specifying Classes of Mappings

a) Specify the class Sr of surjective functions in {1, . . . , n} → {1, . . . , r} for fixed
parameter r ∈ N. The size of a surjection is the size its domain, i. e. |f | = n.

b) Specify the class F of (arbitrary) functions {1, . . . , n} → {1, . . . , n} with (arbitrary)
size |f | = n.

Specifying a Formal Language

Specify the class B of bitstrings b ∈ {0, 1}? with the following properties:

• b ends with the pattern P = 01001.

• P does not occur earlier in b.

Use the number of bits in b as its size.

Specifying with Pointing

Consider the labeled combinatorial class Q implicitly defined by the specification

ΘQ = Q ? Z ?Q , (0.1)

where Θ is the pointing operator as defined by Flajolet et al. [FZV94].

a) Determine the functional equation for the (exponential) generating function Q(z)
for Q according to specification (0.1). Translate this equation of generating func-
tions into an equation of coefficients, thereby deriving a recurrence equation for
Qn, i. e. the number of objects of size n in Q.
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b) Note that (0.1) does not specify Q0. Can you prove a simple closed form of Qn

assuming Q0 = 1?

For an educated guess you might compute the first few entries, say Q0, . . . , Q6, and
ask the On-Line Encyclopedia of Integer Sequences for help—but do not forget
to prove your claims.

c) Show that Q is isomorphic to a well-known1 combinatorial class.

1As in, you know it from your own studies.
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Random Generation

Sampling Secondary Structures

In this exercise, we consider random generation of RNA secondary structures. RNA is
an important single-stranded relative of DNA which exhibits rich folding structures. For
details, refer to our lecture Computational Biology II.
Here, it suffices to know that secondary structures are isomorphic to Motzkin words,
which are words over Σ = {(, ), *} where ( and ) form well-nested pairs and * can
appear anywhere. That is, Motzkin languages are Dyck languages shuffled with {*}?.
For instance, “*((**(***)))*((**))” is a Motzkin word, but neither “)(” nor “(())(”
are.
Formally, we define the unlabeled combinatorial class S of RNA secondary structures as

S = ε + Z* × S + Z( × S × Z) × S . (0.1)

a) Note that Flajolet et al. only consider labeled classes whereas the secondary struc-
tures defined by (0.1) are unlabeled. Argue why their approach of random gener-
ation is also applicable in our case.

b) Use the method described by Flajolet et al. [FZV94] to design an algorithm that
generates a secondary structure of given chosen uniformly among all structures
s ∈ Sn of size n. The algorithm takes n as input.
Give at least the following intermediate steps explicitly:

• the standard specification for S,
• recurrence equations for the number of objects of all classes that occur in the

standard specification and
• the generation procedures for all those classes.

You may directly simplify the generating procedures where possible because of
feature of our special case; make sure to explain your simplifications.

c) Implement your procedure from b) in a programming language of your choice.
Generate 1000 random structures of size n = 100 and draw a histogram of the
number of unpaired bases Un, i. e. the number of * atoms. Can you guess the
distribution of Un? Justify your guess and give EUn.
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Influence of PRNGs on Combinatoric Sampling

In the series of exercise problems Sampling Secondary Structures, Boltzmann-Sampling
of Secondary Structures and Efficient Boltzmann-Sampling of Secondary Structures you
have constructed random samplers for the combinatorial class of Motzkin words. We
will now investigate your choice of random number generator.

a) Have you used a PRNG?

If yes, why? Do you expect its distributional characteristics to carry over to the
distribution of combinatorial structures you sample; in which way, and why?

b) Does your choice affect the result?

Experiment! Sample a sizable amount of Motzkin words using different sources
of random numbers (at least one pseudo and one “true” source). Come up with
several meaningful statistics and check for differences between the sources.
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Optional Exercises

The following exercise problems relate to supplementary material only. We
include them for your enjoyment.

Asymptotics for Motzkin numbers

In this exercise we consider the Motzkin numbers Mn once more. As we have already
seen, their (ordinary) generating function is

M(z) =
∑
n≥0

Mnz
n = 1− z −

√
1− 2z − 3z2

2z2 . (0.1)

We are going to use singularity analysis to derive exact asymptotics for Mn.

a) In order to derive asymptotics, we would like to have a generating function that is
as simple as possible. Consider the simpler relative of M(z)

M̂(z) =
∑
n≥0

M̂nz
n = −1

2

√
1− 2z − 3z2 .

Prove that for n ≥ 2, we have M̂n = Mn−2.

b) Derive exact asymptotics for M̂n, i. e., find an explicit expression m̂(n) with

lim
n→∞

m̂(n)
M̂n

= 1 .

We abbreviate that as M̂n ∼ m̂(n) as n → ∞ and say “M̂n is asymptotically
equivalent to m̂(n).”

Compute and/or plot the relative error of your asymptotic for some moderate
values of n; use your favorite computer algebra system, the online tools on our
website wwwagak.cs.uni-kl.de/mathe-tools.html or Wolfram Alpha.

Hint: Use the Corollary1 from Theorem 5.5 of [SF13].
1Beware of the typing error in the book: You have to replace ρn by ρ−n.
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Hint: To compute specific values of the Gamma function Γ(z), the following basic
properties are handy, see [Old+]:

Γ(n+ 1) = n! n ∈ N (Γ1)
Γ(z + 1) = z Γ(z) z ∈ C (Γ2)

Γ(1
2) =

√
π (Γ1

2)

Γ(z) Γ(1− z) = π

sin(πz) z ∈ C (Γ3)

c) Recall Sampling Secondary Structures, where you built a top-down random sam-
pler for the combinatorial class S of RNA secondary structures, given by:

S = ε + Z* × S + Z( × S × Z) × S . (0.2)

Use your new skills in singularity analysis to verify or disprove your conjecture
about the distribution of the number of unpaired bases in a uniformly chosen
RNA secondary structure of size n.

Hint: The top-down sampler identifies a single point where it is decided which
sort of atom to produce next. Find this point in your sampler and express the
probability p* for a next symbol to be of type Z* as the ratio of the coefficients of
two generating functions. With a computation very similar to b) you can compute
the limit of p*.

Boltzmann-Sampling of Secondary Structures

Consider once again the class of secondary structures given in (0.4).

a) Implement a Boltzmann sampler ΓS(x) for S with parameter x = 0.33 as described
in Section 3 of [DFLS04].

Keep your implementation adaptable for other choices of x, but for simplicity, you
may precompute the needed constants externally and hard-code them into your
program.

b) Let N be the (random!) size of a RNA secondary structure generated by ΓS(0.33).
Compute the expected size EN and its standard deviation σ =

√
VN .

Use Chebychev’s inequality to compute an upper bound N0.99, such that with
at least 99% probability, a random structure generated by ΓS(0.33) has size at
most N ; formally

Pr[N ≤ N0.99] ≥ 0.99 .

c) Use your Boltzmann sampler to generate 1 000 random RNA secondary structures
and draw a histogram of their sizes.
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What can you say regarding the Chebychev tail bound you derived in b)?
Figure 1 of [DFLS04] shows three categories of size distributions for Boltzmann
samplers: “bumpy”, “flat” and “peaked”. In which of these three categories does
ΓS(x) seem to belong?

Asymptotics

Let f(z) be an analytic function with convergence radius strictly larger 1. Show that

[zn]f(z) ln
( 1

1− z
)
∼ f(1)

n
. (0.3)

Improved Boltzmann Yields Good Size With High Probability

Prove Theorem 6.1 by Duchon et al. [DFLS04], that is show that
Pr
[
N ∈ n(1± ε)

]
→ 1 as n→∞ ,

where N is the random size of an object returned by µC(xn;n, ε).
Here, we write n(1± ε) for short and mean the interval

[
n(1− ε), n(1 + ε)

]
⊂ R.

Efficient Boltzmann-Sampling of Secondary Structures

Consider once again the class S of RNA secondary structures, given by
S = ε + Z* × S + Z( × S × Z) × S , (0.4)

and the Boltzmann sampler ΓS(x) you built in Boltzmann-Sampling of Secondary Struc-
tures. In this exercise, we will tweak your sampler for efficiency.

a) Check whether the Boltzmann model of RNA secondary structures fulfills the Mean
Value Condition and the Variance Condition [DFLS04, equations (6.1) and (6.3)].
What guarantees does Theorem 6.1 of the same article provide for your sampler?

b) Determine the singular exponent −α for S(z) as defined in Section 6.2 [DFLS04].
What guarantees does Theorem 6.3 of the same article provide for your sampler?

c) Design a linear time approximate size Boltzmann sampler µS(x;n, ε); remember
to prove your claims.
Extend your implementation from Boltzmann-Sampling of Secondary Structures
to incorporate this sampling algorithm. For simplicity, you may fix n = 100 and
precompute all necessary constants externally.
Use your sampler to draw 10 random RNA structures of size exactly 100. How
many rejections did your sampler need until it found an object of correct size?
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