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Abstract: Several state-of-the-art tools for predicting RNA secondary structures have worst-case time and space require-
ments of O(n3) and O(n2) for sequence length n, limiting their applicability for practical purposes. Accord-
ingly, biologists are interested in getting results faster, where a moderate loss of accuracy would willingly be
tolerated. For this reason, we propose a novel algorithm for structure prediction that reduces the time com-
plexity by a linear factor to O(n2), while still being able to produce high quality results. Basically, our method
relies on a probabilistic sampling approach based on an appropriate stochastic context-free grammar (SCFG):
using a well-known or a newly introduced sampling strategy it generates a random set of candidate structures
(from the ensemble of all feasible foldings) according to a “noisy” distribution (obtained by heuristically ap-
proximating the inside-outside values) for a given sequence, such that finally a corresponding prediction can
be efficiently derived. Sampling can easily be parallelized. Furthermore, it can be done in-place, i.e. only
the best (most probable) candidate structure generated so far needs to be stored and finally communicated.
Together, this allows to efficiently handle increased sample sizes necessary to achieve competitive prediction
accuracy in connection with the noisy distribution.

1 INTRODUCTION
Over the past years, several new approaches towards
the prediction of RNA secondary structures from a
single sequence have been invented which are based
on generating statistically representative and repro-
ducible samples of the entire ensemble of feasible
structures for the given sequence. For example, the
popular Sfold software (Ding and Lawrence, 2003;
Ding et al., 2004) employs a sampling extension
of the partition function (PF) approach (McCaskill,
1990) to produce statistically representative subsets
of the Boltzmann-weighted ensemble. More recently,
a corresponding probabilistic method has been stud-
ied (Nebel and Scheid, 2011) which actually sam-
ples the possible foldings from a distribution implied
by a sophisticated stochastic context-free grammar
(SCFG).

Notably, both sampling methods imply the same
worst-case time and space requirements of O(n3) and
O(n2), respectively, for generating a fix-size sample
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of random secondary structures for a given input se-
quence of length n and can easily be extended to
structure prediction. In fact, a corresponding pre-
diction can be derived from any representative sta-
tistical sample without increasing the overall time
or space complexity. Thus, the worst-case time and
storage requirements for computing structure predic-
tions via statistical sampling are equal to those of
modern state-of-the-art tools for computational struc-
ture prediction from a single sequence, for instance
the commonly used minimum free energy (MFE)
based Mfold (Zuker, 1989; Zuker, 2003) and Vi-
enna RNA (Hofacker et al., 1994; Hofacker, 2003)
packages or the popular SCFG based Pfold soft-
ware (Knudsen and Hein, 1999; Knudsen and Hein,
2003).

Furthermore, applications to structure prediction
showed that neither of the two competing sampling
approaches (SCFG and PF based method) generally
outperforms the other and consequently, it is not ob-
vious which one should rather be preferred in prac-
tice. This somehow contradicts the fact that the best
physics-based prediction methods still generally per-
form significantly better than the best probabilistic
approaches. In principle, only if the computational



effort of one particular variant could be improved
without significant losses in quality (that is if one of
them required considerably less time than the oth-
ers while it sacrificed only little predictive accuracy),
then the corresponding method would be undoubtably
the number one choice for practical applications, in-
deed outperforming all other modern computational
tools for predicting the secondary structure of RNA
sequences. This, by the way, due to the often quite
large sizes of native RNA molecules considered in
practice, meets exactly the demands imposed by biol-
ogists on computational prediction procedures: rather
getting moderately less accurate (but still good qual-
ity) results in less time than needing significantly
more time for obtaining results that are expectedly not
considerably more accurate.

Note that recently, there already have been several
practical heuristic speedups (Wexler et al., 2007;
Backofen et al., 2011). Particularly, the approach
of (Wexler et al., 2007) for folding single RNA
sequences manages to speed up the standard dynamic
programming algorithms without sacrificing the
optimality of the results, yielding an expected time
complexity of O(n2 · ψ(n)), where ψ(n) is shown
to be constant on average under standard polymer
folding models; in (Backofen et al., 2011), it is shown
how to reduce those average-case time and space
complexities in the sparse case. Furthermore, the
practical technique from (Frid and Gusfield, 2010)
achieves an improved worst-case time complexity of
O(n3/ log(n)), and with the (MFE and SCFG based)
algorithms from (Akutsu, 1999), a slight worst-case
speedup of O(n3 · log(log(n))1/2/ log(n)1/2) time
can be reached (whose practicality is unlikely and
unestablished).

In this article, we present a new way to reduce the
worst-case time complexity of SCFG based statisti-
cal sampling by a linear factor, making it possible
to predict for instance the most probable (MP) struc-
ture among all feasible foldings for a given input se-
quence of length n (in direct analogy to conventional
structure prediction via SCFGs) with only O(n2) time
and space requirements. This complexity improve-
ment is basically realized by employing an appropri-
ate heuristic instead of the corresponding exact algo-
rithm for preprocessing the input sequence, i.e. for
deriving a “noisy” distribution (induced by heuristic
approximations of the corresponding inside and out-
side probabilities) on the entire structure ensemble
for the input sequence. From this distribution candi-
date structures can be efficiently sampled.2 Moreover,

2With purposive proof-of-concept implementations (in
Wolfram Mathematica 7.0), for instance the overall prepro-

we will consider two different sampling strategies: (a
slight modification of) the widely known sampling
procedure from (Ding and Lawrence, 2003; Nebel
and Scheid, 2011) which basically generates a ran-
dom structure from outside to inside, and a novel al-
ternative strategy that obeys to contrary principles and
employs a reverse course of action (from inside to out-
side) but manages to take more advantage of the ap-
proximative preprocessing.

As we will see, even building on our new heuris-
tic preprocessing step, both sampling strategies can
be applied to obtain MP structure predictions of
respectable accuracy. In principle, for sufficiently
large sample sizes we obtain a similar high predic-
tive accuracy as in the case of exact calculations3.
The seemingly sole pitfall is that due to the noisy
ensemble distribution resulting from approximative
computations, the resulting samples are no longer
guaranteed to primarily contain rather likely struc-
tures (with respect to the exact distribution of feasible
foldings for a given input sequence), such that we
usually have to generate more candidate structures
(i.e., consider larger sample sizes) in oder to ensure
reproducible structure predictions. However, this
is quite unproblematic in practice: firstly, we can
generate the candidate structures in-place (only the
so far most probable structure needs to be stored),
such that large sample sizes give no rise to memory
consumption and secondly, generating samples can
easily be parallelized on modern multi-core architec-
tures or grids.

The rest of this paper is organized as follows: Sec-
tion 2 briefly recaps the principles of probabilistic sta-
tistical sampling and provides the needed formalities.
Section 2.3 contains a (short and exemplary) analysis
on how different types and levels of disturbances in
the underlying ensemble distribution affect the result-
ing sampling quality. This actually yields an impres-
sion on the required precision of an adequate heuristic
approximation scheme. Section 3 describes all facts
concerning the approximative preprocessing step that
needs to be applied for decreasing the worst-case time
requirements. A (slightly modified) common sam-
pling strategy and an alternative novel strategy (in-
tended to match well with our heuristic method) are
introduced and opposed in Section 4. In Section 5,

cessing time for E.coli tRNAAla (of length n = 76) could be
reduced from 49.0 (traditional cubic algorithm) to only 3.7
(new quadratic strategy) seconds.

3For E.coli tRNAAla, we for instance observed the same
sensitivity and specificity values of 1.0 and 0.91, respec-
tively, with a particular application of our heuristic method
and the corresponding exact variant.



the overall quality of generated sample sets and their
applicability to RNA structure prediction are investi-
gated. We present experiments which show how the
prediction accuracy grows with the sample size to-
gether with considerations on how an efficient imple-
mentation can deal with large sample sets. Finally,
Section 6 concludes the paper.

2 PRELIMINARIES
In the sequel, given an RNA molecule r consisting of
n nucleotides, we denote the corresponding sequence
fragment from position i to position j, 1≤ i≤ j ≤ n,
by Ri, j = riri+1 . . .r j−1r j. Accordingly, Si, j denotes a
feasible secondary structure on Ri, j.

2.1 Sampling Based on SCFG Model
Briefly, probabilistic sampling based on a suitable
SCFG Gs with sets IGs and RGs of intermediate sym-
bols and productions, respectively, and axiom S ∈ IGs
(that models the class of all feasible secondary struc-
tures) has two basic steps: In the first step (prepro-
cessing), all inside probabilities

αX (i, j) := Pr(X ⇒∗lm ri . . .r j) (1)

and all outside probabilities

βX (i, j) := Pr(S⇒∗lm r1 . . .ri−1 X r j+1 . . .rn) (2)

for a sequence r of size n, X ∈ IGs and 1≤ i, j≤ n, are
computed. According to (Nebel and Scheid, 2011),
this can be done with a special variant of an Earley-
style parser (such that the considered grammar does
not need to be in Chomsky normal form (CNF)),
where the grammar parameters (trained beforehand
on a suitable RNA structure database) are splitted into
a set of transition probabilities Pr0

tr(rule) for rule ∈
RGs and two sets of emission probabilities Pr1

em(·) for
the 4 unpaired bases and the 16 possible base pairings.
For any such SCFG Gs, there results O(n3) time com-
plexity and O(n2) memory requirement for this pre-
processing step. Note that in this work, we will use
the sophisticated grammar from (Nebel and Scheid,
2011) which has been parameterized to impose two
relevant restrictions on the class of all feasible struc-
tures, namely a minimum length of minHL for hairpin
loops and a minimum number of minhel consecutive
base pairs for helices.

The second step takes the form of a recursive sam-
pling algorithm to randomly draw a complete sec-
ondary structure by consecutively sampling substruc-
tures (defined by base pairs and unpaired bases). No-
tably, different sampling strategies may be employed
for realizing this step; two contrary variants that will
be considered within this work are described in detail

in Section 4. In general, for any sampling decision
(for example choice of a new base pair), the strategy
considers the respective set of all possible choices that
might actually be formed on the currently considered
fragment of the input sequence. Any of these sets con-
tains exactly the mutually and exclusive cases as de-
fined by the alternative productions (of a particular in-
termediate symbol) of the underlying grammar. The
corresponding random choice is then drawn accord-
ing to the resulting conditional sampling distribution
(for the considered sequence fragment). This means
that the respective sampling distributions are defined
by the inside and outside values derived in step one
(providing information on the distribution of all pos-
sible choices according to the actual input sequence)
and the grammar parameters (transition probabilities).

Since every of the before mentioned conditional
distributions needed for randomly drawing one of the
respective possible choices can be derived in linear
time (during the sampling process), any valid4 base
pair can be sampled in time O(n). Thus, since any
structure of size n can have at most b n−minHL

2 c base
pairs, a random candidate structure for the given
input sequence can be generated in O(n2) time.

Thus, one straightforward approach for improving
the performance of the overall sampling algorithm in
the worst-case is to reduce the O(n3) time complex-
ity required for the preprocessing step at least to the
quadratic time of the sampling strategy. To us, this
means we might be able to save a significant amount
of time by replacing the exact inside-outside calcula-
tions with a corresponding heuristic method yielding
only approximative inside-outside values for a given
input sequence. To see if this might actually be suc-
cessful, we next want to determine to which extend
the inside and outside probabilities react to different
types and degrees of disturbances in order the get evi-
dence if it could actually be possible to find an appro-
priate heuristic.

2.2 Considered Disturbance Types and
Levels

We decided to disturb the exact inside and outside
probabilities for a given input sequence r of length n
in the following ways: For each X ∈ IGs and 1≤ i, j≤
n, redefine the corresponding inside value according

4One may for example consider only the 6 different
most stable canonical pairs as valid ones (like usually done
in physics-based approaches due to missing thermodynam-
ics parameters for non-canonical pairs). However, we de-
cided to drop this restriction, considering all possible non-
crossing base pairings to be valid.



to

αX (i, j) := max(min(αX (i, j)+αerr,1),0), (3)

where αerr is randomly chosen from the following in-
terval or set:

[−maxErrPercαA(i, j),+maxErrPercαA(i, j)] or
{−fixErrPercαA(i, j),+fixErrPercαA(i, j)}

(relative errors), with maxErrPerc,fixErrPerc ∈ (0,1]
defining percentages, or else,

[−maxErrVal,+maxErrVal] or {−fixErrVal,+fixErrVal}
(absolute errors), with maxErrVal,fixErrVal ∈ (0,1] be-
ing fixed values. Random errors on all outside values
βX (i, j), X ∈ IGs and 1≤ i, j ≤ n, can be generated in
the same way.

The needed conditional sampling distributions (as
considered by a particular strategy) are then derived
from the exact grammar parameters and the disturbed
inside-outside probabilities for the input sequence.
This might create the need to (slightly) modify a par-
ticularly employed sampling strategy for being capa-
ble of dealing with these skewed distributions, as we
will see in Section 4.1.

2.3 Analysis of the Influence of
Disturbances

To get a first impression on the influence of distur-
bances (in the ensemble distribution for a given input
sequence) on the quality of generated sample sets, we
opted for the potentially most intuitive application in
this context, namely probability profiling for unpaired
bases within particular loop types (see, e.g., (Ding and
Lawrence, 2003)). In principle, for each nucleotide
position i, 1 ≤ i ≤ n, of a given sequence of length
n, one computes the probabilities that i is an unpaired
base within a specific loop type. These probabilities
are given by the observed frequencies in a represen-
tative statistical sample of the complete ensemble (of
all possible secondary structures) for the given input
sequence.

Furthermore, in order to investigate to what ex-
tend the accuracy of predicted foldings changes when
different dimensions of relative disturbances are in-
corporated into the needed sampling probabilities, we
will additionally derive the most probable (MP) struc-
ture in the generated samples, respectively, as predic-
tion.

Note that for our examinations, we will exemplar-
ily consider a well-known trusted tRNA structure, Es-
cherichia coli tRNAAla, since this molecule folds into
the typical cloverleaf structure, making it very easy to
judge the accuracy of the resulting profiles and pre-
dictions.

Figure 1 indicates that even in the case of large
relative errors, the sampled structures still exhibit
the typical cloverleaf structure of tRNAs, especially
for the extenuated disturbance variant according to
maxErrPerc which seems to have practically no effect
on the resulting sampling quality and prediction ac-
curacy. However, Figure 2 perfectly demonstrates
that if the disturbances have been created by gener-
ating absolute errors on all inside values, then – even
for rather small values – the resulting samples (and
corresponding predictions as well) seem to be use-
less. Nevertheless, it seems reasonable to believe that
the inside and outside probabilities do not necessarily
have to be computed in the exact way, but it may prob-
ably suffice to only (adequately) approximate them.

3 REDUCING THE
PREPROCESSING TIME

According to the previous discussion, the proclaimed
aim of this section is to lower the O(n3) time com-
plexity for preliminary inside-outside calculations to
O(n2), such that the preprocessing has the same
worst-case time requirements as the subsequent sam-
pling process (for constructing a constant number of
random secondary structure of size n).

3.1 Basic Idea
The main idea for reaching this time complexity re-
duction by a factor n in the worst-case is actually
quite simple: Instead of deriving the inside values
αX (i, j) (and the corresponding outside probabilities
βX (i, j)), X ∈ IGs , for any combination of start po-
sition i and end position j, 1 ≤ i, j ≤ n, we abstract
from the actual position of subword Ri, j = ri . . .r j
in the input sequence and consider only its length
d = |ri . . .r j|. Thus, for any X ∈ IGs , we do not need
to calculate O(n2) values αX (i, j) (and βX (i, j)) for
1≤ i, j ≤ n, but only O(n) values αX (d) (and βX (d))
for 0 ≤ d ≤ n. However, the problem with this ap-
proach is that distance d alone may be associated with
any of the strings in {ri . . .r j | j− i+1 = d}, i.e. with-
out using positions i and j we are inevitably forced to
additionally abstract from the actual input sequence r.

Note that it is also possible to combine both alter-
natives, that is we can first use the traditional algo-
rithms to calculate exact values αX (i, j) (and βX (i, j))
within a window of fixed size Wexact , i.e. for j− i+
1≤Wexact (and j− i+1≥ n−Wexact ), and afterwards
derive the remaining values for Wexact < d ≤ n (and
0≤ d < n−Wexact ) in an approximate fashion by em-
ploying the time-reduced variant for obtaining αX (d)
(and βX (d)) for each X ∈ IGs . Since Wexact is con-
stant, this effectively yields an improvement in the
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Figure 1: Loop profiles and MP predictions obtained for E.coli tRNAAla. Hplot and Mplot display the probability that an
unpaired base lies in a hairpin and multibranched loop, respectively. All results have been derived from samples of size 1,000,
generated with minhel = 2 and minHL = 3. Errors were produced with maxErrPerc = 0.99 (thick gray lines) and fixErrPerc = 0.99
(thick dotted darker gray lines).The profiles also display the respective exact results (thin black lines) and the native folding
of E.coli tRNAAla (black points).
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Figure 2: Sampling results for E.coli tRNAAla corresponding to those presented in Figure 1, where maxErrVal = 10−9 (thick
gray lines) and fixErrVal = 10−9 (thick dotted darker gray lines) have been chosen for generating the disturbances.

time complexity of the corresponding complete inside
computation, which is then given by O(n2 ·Wexact).
However, even for fix Wexact the time requirements
for such a mixed outside computation are O(n3).

3.2 Approximation of Emission
Probabilities

Due to the unavoidable abstraction from sequence, we
have to determine some approximated terms for the
emissions of unpaired bases and base pairs, respec-
tively, that

• do not depend on the positions of subwords within
the overall input word, but

• should at least depend on the lengths of the corre-
sponding subwords,

where it is strongly recommended to make sure that
as much information on the composition of the actual
input sequence as possible is incorporated into these
approximated terms.

Therefore, we decided to use the following
emission terms that incorporate relative frequencies
rf1

em(ri, i− i+1) and rf2
em(rir j, j− i+1) for unpaired

bases and base pairs, respectively, that can be effi-

ciently derived from the actual input sequence:

P̂r
1
em(1) := ∑

u∈ΣGr

Pr1
em(u) · rf1

em(u,1), (4)

P̂r
2
em(d) := ∑

p1 p2∈Σ2
Gr

Pr2
em(p1 p2) · rf2

em(p1 p2,d). (5)

3.3 (Improved) Approximated
Sampling Probabilities

Fortunately, during the complete sampling process,
not only the start and end positions of the currently
considered sequence fragment Ri, j, 1 ≤ i, j ≤ n, but
also the actual input sequence r are always known.
Thus, we can in certain cases easily remove some ap-
proximate factors in the corresponding approximated
inside and outside probabilities and replace them with
the respective correct terms (depending on i, j and r)
in order to obtain more reliable values.

Therefore, for any sampling strategy, the sampling
probabilities from which the respective (conditional)
distributions for possible choices are inferred should
be defined by using such improved inside and out-
side probabilities (instead of the corresponding uncor-
rected precomputed ones). For example, if X ∈ IGs



generates hairpin loops, we should use

α̂X (i, j) :=

{
αX (i, j), if ( j− i+1)≤Wexact ,

αX ( j− i+1) · c1
em(i, j), else,

(6)
and

β̂X (i, j) :=


βX (i, j), if ( j− i+1)≥ n−Wexact ,

βX ( j− i+1)×
c2

em(i−minhel, j+minhel,minhel), else,
(7)

where

c1
em(s,e) :=

∏
e
k=s Pr1

em(rk)

P̂r
1
em(1)e−s+1

(8)

and

c2
em(i, j, l) :=

∏
l−1
k=0 Pr2

em(ri+kr j−k)

∏
l−1
k=0 P̂r

2
em(( j− k)− (i+ k)+1)

. (9)

4 Considered Sampling Strategies
For the subsequent examinations, we will employ two
different sampling strategies, which are introduced
now.

4.1 Well–Established Strategy
Let us first consider a slightly modified variant of the
rather simple and widely known sampling strategy
from (Ding and Lawrence, 2003; Nebel and Scheid,
2011). Briefly, this well-established strategy samples
a complete secondary structure S1,n for a given input
sequence r of length n in the following recursive way:
Start with the entire RNA sequence R1,n and con-
secutively compute the adjacent substructures (single-
stranded regions and paired substructures) of the ex-
terior loop (from left to right). Any (paired) substruc-
ture on fragment Ri, j, 1≤ i< j≤ n, is folded by recur-
sively constructing substructures (hairpins, stacked
pairs, bulges, interior and multibranched loops) on
smaller fragments Rl,h, i ≤ l < h ≤ j. That is, frag-
ments are sampled in an outside-to-inside fashion.

Notably, without disturbances of the underlying
probabilistic model, it is guaranteed that any sampled
loop type for a considered sequence fragment can
be successfully generated (otherwise its probability
would have been 0). As this must not hold in dis-
turbed cases (like e.g. those of Section 2.3), the most
straightforward modification to solve this problem is
that in any such case where the chosen substructure
type can not be successfully generated, the strategy
returns the partially formed substructure. Figure 3
gives a schematic overview on this inherently con-
trolled sampling strategy.

As regards this particular sampling strategy, the out-
side values can easily be omitted from the correspond-
ing formulae for defining the needed sampling prob-
abilities, since in any case they contribute the same
multiplicative factor to the distinct sampling proba-
bilities for mutually exclusive and exhaustive cases,
such that they finally do not influence the sampling
decision at all.

The correctness of this simplification can easily be
verified by considering a particular set acX (i, j) of all
choices for (valid) derivations of intermediate sym-
bol X ∈ IGs on sequence fragment Ri, j, 1≤ i < j ≤ n,
which actually correspond to possible substructures
on Ri, j. Under the assumption that the alternatives for
intermediate symbol X are X → Y and X → VW , the
(valid) mutually exclusive and exhaustive cases are
defined by:

acX(i, j) := acXY (i, j)∪acXVW (i, j), (10)

where

acXY (i, j) := {{0, p} | p 6= 0 for

p = βX (i, j) ·αY (i, j) ·Pr0
tr(X → Y )}

(11)

and

acXVW (i, j) := {{k, p} | i≤ k ≤ j and p 6= 0 for

p = βX (i, j) ·αV (i,k)αW (k+1, j) ·Pr0
tr(X →VW )}.

(12)

We then sample from the probability distribution
induced by acX(i, j) (conditioned on fragment Ri, j),
which implies

1 = ∑
p∈acX(i, j)

p
z
=

βX (i, j)
z ∑

p∈acX(i, j)

p
βX (i, j)

, (13)

with
z := ∑

p∈acX(i, j)
p, (14)

since βX (i, j) 6= 0 due to the definition of acX(i, j).

4.2 Alternative Strategy
Unfortunately, the common sampling strategy from
Section 4.1 lacks the ability to take full advantage of
the exact inside values α̂X (i, j) = αX (i, j), for X ∈ IGs
and j− i+1 ≤Wexact , obtained by employing a par-
ticular mixed preprocessing variant according to 0 ≤
Wexact < n. Particularly, the strategy in general in-
evitably has to sample the first base pairs from cor-
responding conditional probability distributions for
rather large fragments Ri, j with j− i + 1 > Wexact ,
which are indeed induced by approximated sampling
probabilities rather than exact ones. Therefore, we
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Figure 3: Flowchart for recursive sampling of an RNA secondary structure S1,n for a given input sequence r of length n
according to an inherently controlled strategy with predetermined order, similar to that of (Ding and Lawrence, 2003; Nebel
and Scheid, 2011)).

worked out an alternative to this well-established
sampling strategy that obeys to contrary principles,
resulting in a reverse sampling direction.

Basically, a complete secondary structure S1,n for
a given input sequence r of length n can alternatively
albeit unconventionally be sampled in the following
(deliberately less controlled) way: Start with the en-
tire RNA sequence Rstart,end = R1,n and randomly
construct adjacent substructures (paired substructures
preceeded by potentially empty single-stranded re-
gions) of the exterior loop on the considered sequence
fragment Rstart,end (where the construction does not

follow a particular order, e.g. does not sample from
left to right), as long as no further paired substructure
can be folded. Any (paired) substructure on fragment
Rstart,end , 1≤ start ≤ end ≤ n, is created by sampling
a random hairpin loop (with closing base pair i. j, for
start < i < j < end) – here we can take advantage of
exact inside values from a mixed preprocessing since
most likely i and j are close – and extending it (to-
wards the ends of Rstart,end) by successively drawing
closing base pairs. During this extension, basically all
known substructures (stacked pairs, bulges, interior
and multibranched loops, that obey to certain restric-
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Figure 4: Flowchart for recursive sampling of an RNA secondary structure S1,n for a given input sequence r of length n
according to a less restrictive strategy with extensively more freedom (that requires dynamic validation of possible random
choices during the sampling process).

tions which will be discussed later) may be folded,
where each substructure (e.g. multiloop) has to be
completed before its closing base pair is added and the
corresponding helix can actually be further extended.
The process of folding a particular paired substructure
ends with a complete and valid paired structure (of the
currently folding multiloop or of the exterior loop), ei-
ther with or without a directly preceeding unpaired re-
gion, both on the considered fragment Rstart,end . Fig-

ure 4 gives a schematic overview on this inside-out
fashion sampling strategy.

Note that in order to ensure that all sampled sub-
structures can be successfully folded, especially in
the case of multiloops, we have to take care that at
any point, the strategy may only draw such random
choices that do not make it impossible to success-
fully finish the currently running construction process
(of a particular loop). As this strongly depends on



Table 1: Comparsion of the considered sampling strategies (for an arbitrary input sequence of length n).

Aspect Conventional Strategy Alternative Strategy
Preprocessing
time

O(n3) for exact calculations,
O(n2) for approximate variant,
O(n2) with constant Wexact ≥ 0

O(n3) for exact calculations,
O(n2) for approximate variant,
O(n3) with constant Wexact ≥ 0

Constraints None Constant maxhairpin, maxbulge and maxstrand
Characteristics
and course of
action

Inherently controlled, ordered:
- substructures from left to right,
- sampling proceeds “inwards”:
construction of substructure Si, j
starts by considering Ri, j and ends
by generating an unpaired region
(usually a hairpin loop)

Extensively more freedom, less restrictive:
- substructures in arbitrary order,
- sampling proceeds “outwards”:
construction of new substructure on unfolded
fragment Rstart,end starts with random hairpin
loop which is extended to a complete and valid
(paired) substructure Si, j on Rstart,end

Benefits of sam-
pling direction

(Sub)structures are folded in ac-
cordance with the generation of
the corresponding (unique leftmost)
derivation (sub)tree by the underly-
ing SCFG

Takes more advantage of inside probabilities
for shorter fragments containing less approx-
imated terms and thus less inaccuracies (al-
though this potential is narrowed by the out-
side values for which the contrary holds)

Function of out-
side values

Not considered (do not influence
sampling distributions)

1) “Normalize” sampling probabilities
2) Ensure valid extensions

Identification of
valid choices

Not required (all possible choices
are principally valid)

Dynamic checking required (due to depen-
dence on previously folded substructures)

Folding time O(n2) O(n2) with larger constants
Overall time
complexity for
MP predictions

O(n3) with exact variant,
O(n2) with constant Wexact ≥ 0 or
in completely approximated case

O(n3) in case of exact computations or mixed
variants according to Wexact ≥ 0,
O(n2) only in completely approximated case

the actual positions and types of all previously folded
paired substructures, the algorithm obviously needs to
dynamically determine the respective set of all valid
choices (during the sampling process itself) before
a corresponding probability distribution (needed for
drawing a particular random choice) can be derived.

This, however, may cause severe problems as re-
gards the time complexity for randomly sampling the
next extension (or base pair). Nevertheless, in or-
der to guarantee that the worst-case time complex-
ity for drawing any random choice remains in O(n),
we only need to impose a few restrictions concerning
the lengths of single-stranded regions in some types
of loops. In detail, we have to consider a maximum
allowed number of nucleotides in unpaired regions
of hairpin loops (maxhairpin), bulge or interior loops
(maxbulge), and multiloops (maxstrand)5.

For example, if X ∈ IGs generates hairpin loops,

5Note that these restrictions are not as severe as it may
seem, since for example choosing the constant value 30 for
all three parameters can be expected to hardly have a nega-
tive impact on the resulting sampling quality. In fact, many
MFE based prediction algorithms also restrict the lengths
of particular single-stranded regions, at least for long bulge
and interior loops (where the proposed constant value of 30
is considered a common choice).

then the set of all possible hairpin loops that can be
validly folded on sequence fragment Rstart,end is given
by

pcHL(start,end) :=
{
{i, j, p} |

start +minhel ≤ i≤ j ≤ end−minhel and
i+minHL−1≤ j ≤ i+maxhairpin−1 and
Ri−minhel, j+minhel not folded and

p = β̂X (i, j) · α̂X (i, j) 6= 0
}
. (15)

Obviously, maxhairpin indeed ensures that
pcHL(start,end) can be computed in O(n) time.

Finally, it should be noted that this sampling strategy
needs to additionally consider outside probabilities,
for two reasons: First, for “normalizing” the result-
ing sampling probabilities. This is due to the fact that
the different possible choices {i, j, p} usually imply
substructures Si, j of different lengths j− i+ 1, such
that only p = α̂X (i, j) · β̂X (i, j) ensures that the prob-
abilities of all possible choices are of the same order
of magnitude and hence imply a reasonable probabil-
ity distribution for drawing a random choice. Sec-
ond, the outside values are required for guaranteeing
that sampled substructures can be validly extended.



This means that only such hairpin loops and exten-
sions (implying a surrounding base pair i. j) may be
sampled that can actually lead to the generation of a
corresponding valid helix.

We conclude this section by referring to Table 1
that summarizes the main differences of both sam-
pling variants.

5 APPLICATIONS
First, the sampling results shown in Figure 5 indicate
that for the common sampling strategy, considering
a window of constant size Wexact (chosen to cover
the size of hairpin-loops) with a mixed preprocess-
ing variant, actually yields a slight improvement of
the resulting sampling quality, where the same time
requirements are needed for generating the respective
sample sets.

Contrary to this observation, Figure 6 demon-
strates that when employing our alternative sampling
strategy, the corresponding results are not signifi-
cantly different for the completely approximate pre-
processing variant and for a mixed version on the ba-
sis of a constant value for Wexact . Thus, to our surprise
it does not matter if we consider a constant window
for exact calculations or simply approximate all in-
side and outside values, which is not only an interest-
ing observation itself, but also fortunately prevents us
from having to deal with an undesirable trade-off be-
tween reducing the worst-case time complexity (by a
linear factor) and sacrificing less of the resulting sam-
pling quality. In fact, this means we may (without re-
sulting significant quality losses) always use the more
efficient approximative preprocessing variant in order
to reduce the worst-case time complexity of the over-
all sampling algorithm.

However, all profiles perfectly demonstrate that
due to the noisy ensemble distribution caused by ap-
proximating the highly relevant sequence-dependent
emission probabilities, the resulting sample sets usu-
ally contain many foldings that are rather unlikely ac-
cording to the exact distribution for the considered in-
put sequence. For this reason, it can not be recom-
mended to employ one of the following otherwise rea-
sonable construction schemes for deriving predictions
according to the entire sample set: we should rather
neither predict γ-MEA nor γ-centroid structures of the
generated sample set as defined in (Nebel and Scheid,
2011), since those effectively reflect the overall be-
havior of the sample set. Those predictions must any-
way be considered inappropriate choices in our case,
since their computation requires O(n3) time, which
would inevitably undo the time reduction reached by
approximating. Nevertheless, we can without signif-
icant losses in performance (without increasing the

worst-case time complexity of the overall algorithm)
identify the MP structure of the generated sample6, in
strong analogy to traditional SCFG approaches. Since
for this selection principle, we can actually rely on the
exact distribution of feasible structures7, this seems to
be the right choice indeed.

On the basis of a series of experiments, we ob-
served that stability in resulting predictions and a
competitive prediction accuracy can only be reached
by increasing the sample size, especially in the case
of complete approximation for the preprocessing step
and sampling according to the alternative strategy in-
troduced in Section 4.2. That is, more candidate struc-
tures ought to be generated for guaranteeing that the
resulting MP predictions are reproducible (by inde-
pendent runs for the same input sequence) and of
hight quality. This negative effect is considerably
lowered by using (larger) constant values of Wexact ≥
0, and is actually less recognizable when employing
the conventional sampling strategy recapped in Sec-
tion 4.1. Figure 7 shows the averaged sensitivities and
specificities obtained for 50 independent runs of con-
tinuously sampling secondary structures taking the so
far most probable one as the actual prediction (which
determines sensitivity and specificity for the actual
sample size).

We observe that when making use of approximate
probabilities sample sizes about 40 to 50 times as
large as for a precise preprocessing are needed to gen-
erate competitive predictions. Thus, for a naive im-
plementation the speedup gained by approximation
may partly be lost. However, unlike prediction al-
gorithms using dynamic programming, sampling can
easily be parallelized. Making use of a grid envi-
ronment where today one may assume a processor to
have about 8 cores, a grid of size 5 or 6 computers
is sufficient to compensate the increased sample size.
Furthermore, since we only make use of the most
probable sampled structure for our prediction, sam-
pling can be done in-place, storing in each core only
the best structure seen so far. This reduces the mem-
ory requirements and keeps the communication costs

6The probability of each structure can either be deter-
mined on the fly while sampling, multiplying the probabili-
ties of the production rules which correspond to the respec-
tive sampling decisions, and otherwise – since the under-
lying SCFG from (Nebel and Scheid, 2011) is unambigu-
ous – are computable in O(n2) time making use, e.g., of an
Earley-style parser.

7Note that the probability for a particular folding of a
given RNA sequence is equal to a product of (different pow-
ers of the diverse) transition and emission probabilities (ac-
cording to the corresponding derivation tree), which means
it depends only on the exact trained parameter values of the
underlying SCFG.



0 10 20 30 40 50 60 70
0.0

0.2

0.4

0.6

0.8

1.0

Nucleotide Position

P
ro

ba
bi

lit
y

Hplot

0 10 20 30 40 50 60 70
0.0

0.2

0.4

0.6

0.8

1.0

Nucleotide Position

P
ro

ba
bi

lit
y

Mplot

Figure 5: Sampling results for E.coli tRNAAla, derived with the common strategy (under the assumption of minhel = 2 and
minHL = 3), where we used sample size 100,000, 10,000 and 1,000 for Wexact =−1 (no window, thick gray lines), Wexact = 30
(moderate window, thick dotted darker gray lines) and Wexact =+∞ (complete window, thin black lines), respectively.
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Figure 6: Sampling results corresponding to those of Figure 5, obtained by employing the alternative sampling strategy.
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Figure 7: Sensitivity and specificity of prediction as a function of sample size derived for E.coli tRNAAla. Top (bottom) line
shows the common (alternative) sampling strategy for Wexact = −1 (no window, thick gray lines), Wexact = 30 (moderate
window, thick dotted darker gray lines) and Wexact =+∞ (complete window, thin black lines), respectively.

rather moderate since it is finally only necessary to
gather m structures from m cores and select the best.
We performed a series of experiments, making use of
Mathematica’s parallel computation features, which
proved that the overall process scales linearly in the
number of cores used with a non-measurable commu-
nication overhead. This finally proves the applicabil-
ity of our approach providing a factor n speedup com-
pared to established prediction tools but still main-
taining the limits implied by a quadratic memory con-
sumption (in our case used to store parameter values).

6 CONCLUSION
The major advantage of the presented approximative
method is that it is more efficient than all other mod-
ern prediction algorithms (implemented in popular
tools like Mfold (Zuker, 2003), Vienna RNA (Ho-
facker, 2003), Pfold (Knudsen and Hein, 2003),
Sfold (Ding et al., 2004) or CONTRAfold (Do et al.,
2006)), reducing the worst-case time complexity by
a linear factor, such that the time and space require-
ments are both bounded by O(n2). However, a poten-
tial drawback lies in the observation that the overall
quality of generated samples decreases (as indicated
by probability profiling for specific loop types), which
is due to the approximated ensemble distribution. As
a consequence, we usually need to use larger sample



sizes for obtaining a competitive prediction accuracy
and stable predictions, i.e., more candidate structures
for a given input sequence have to be generated to
ensure that the approximation method outputs rather
identical predictions in independent runs for that se-
quence. According to our experiments, an efficient
implementation that really takes advantage of the ac-
celerated preprocessing (3.7 compared to 49 seconds
for our proof-of-concept implementation in Wolfram
Mathematica) but handles large sample sizes can be
obtained by parallelization.
Note that all results presented in this article have been
derived with a purposive proof-of-concept implemen-
tation of the described methods. A more sophisti-
cated tool will be realized in the future, hoping that
the proposed prediction approach proves capable of
yielding acceptable accuracies even for such types of
RNAs whose molecules imply a great variety of struc-
tural features (due to large sequence lengths). In fact,
we here only considered exemplary applications for
one particular tRNA molecule in order to get positive
feedback that (at least) the MP predictions obtained
via approximated SCFG based sampling can be of
high quality. Accordingly, more general experiments
are needed, e.g., in connection with RNA molecules
of sizes n = 3000− 30000 (for which the memory
constraints of our approach are not restrictive assum-
ing 1GB of memory for each core) and where long
distance base pairs in a global folding are of interest.
In such a scenario the proposed algorithm could be
the method of choice provided it performs similarly
well.

This line of research is work in progress, but we
found the first impressions presented within this note
so motivating that we wanted to share them with the
scientific community already at this point, primarily
because this work leaves a number of open questions
that may be inspiration for further research of other
groups. For instance, recall that we used a sophis-
ticated SCFG (representing a formal language coun-
terpart to the thermodynamic model applied in the
Sfold program) as probabilistic basis for the consid-
ered sampling strategies. However, it would also be
possible to employ other SCFG designs, for example
one of the commonly known lightweight grammars
from (Dowell and Eddy, 2004). This might of course
yield at least noticeable if not significant changes in
the resulting sampling quality, which could be an in-
teresting subject to be explored.

It should also be noted that a similar approxima-
tive approach could potentially be considered when
attempting to reduce the worst-case time complexity
of the sampling extension of the PF approach. In fact,
since sequence information is incorporated into the

used (equilibrium) PFs and corresponding sampling
probabilities only in the form of particular sequence-
dependent free energy contributions, it seems reason-
able to believe that the time complexity for the for-
ward step (preprocessing) could possibly be reduced
by a linear factor to O(n2) when using some sort
of approximated (averaged) free energy contributions
that do not depend on the actual sequence (but con-
tain as much sequence information as possible), in
analogy to the approximated preprocessing step (in-
side and outside calculations) considered in this work,
where we eventually only had to use averaged emis-
sion terms instead of the exact emission probabilities
in order to save time.
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