Technische Universität

## Exercise Sheet 7 zur Vorlesung Computational Biology (Part 2), WS 12/13

Hand In: Until Monday, 28.01.2013, 10:00 am, email to wild@cs. . . or in lecture.

## Exercise 14

Consider Zuker's algorithm as given on pages 201f in the lecture script.
a) Show that the recursion for $E(i, j)$ can be equivalently written as

$$
E(i, j):=\min \left\{\begin{array}{l}
E\left(L_{i, j}\right)  \tag{1}\\
\min _{i \leq k<j} E(i, k)+E(k+1, j)
\end{array}\right.
$$

(Note the $\leq$ instead of the $<$ in the inner minimum!)
b) Show that $E$ fulfills a kind of triangle inequality:

$$
\forall i \leq k<j: E(i, j) \leq E(i, k)+E(k+1, j)
$$

c) Consider again recurrence (1) and assume that the value of $E(i, j)$ resulted from the second alternative, i. e. formally $\exists k: E(i, j)=E(i, k)+E(k+1, j)$. Let $k$ be minimal with this property.
Show that $E(i, k)=E\left(L_{i, k}\right)$, i. e. the minimum for computing $E(i, k)$ was attained by the first alternative in (1).
Note: This means that in the bifurcation alternative, we only need to consider split points $k$, where the optimal substructure for range $i \ldots k$ includes the base pair $(i, k)$ !
d) Prove the following domination relation:

Let $i<k \leq l$ be indices such that $E\left(L_{i, k}\right)+E(k+1, l) \leq E\left(L_{i, l}\right)$. Then for any $j \geq l$ also

$$
E\left(L_{i, k}\right)+E(k+1, j) \leq E\left(L_{i, l}\right)+E(l+1, j)
$$

holds.
For the more visually inclined, the claim says


Note: The dominance relation says that if for substructure $i \ldots l$, including base pair $(i, l)$ did not improve energy, neither does it when we extend the substructure to the right.
e) Use the results of c) and d) to design a variant of Zuker's algorithm that does not naïvely iterate over all possible values for $k$ in the bifurcation alternative.

