
Average Case Analysis of
Java 7’s Dual Pivot Quicksort?

Sebastian Wild and Markus E. Nebel

Fachbereich Informatik, Technische Universität Kaiserslautern
{s_wild,nebel}@cs.uni-kl.de

Abstract Recently, a new Quicksort variant due to Yaroslavskiy was
chosen as standard sorting method for Oracle’s Java 7 runtime library.
The decision for the change was based on empirical studies showing that
on average, the new algorithm is faster than the formerly used classic
Quicksort. Surprisingly, the improvement was achieved by using a dual
pivot approach, an idea that was considered not promising by several the-
oretical studies in the past. In this paper, we identify the reason for this
unexpected success. Moreover, we present the first precise average case
analysis of the new algorithm showing e. g. that a random permutation
of length n is sorted using 1.9n lnn − 2.46n + O(lnn) key comparisons
and 0.6n lnn+ 0.08n+O(lnn) swaps.

1 Introduction

Due to its efficiency in the average, Quicksort has been used for decades as gen-
eral purpose sorting method in many domains, e. g. in the C and Java standard
libraries or as UNIX’s system sort. Since its publication in the early 1960s by
Hoare [1], classic Quicksort (Algorithm 1) has been intensively studied and many
modifications were suggested to improve it even further, one of them being the
following: Instead of partitioning the input file into two subfiles separated by a
single pivot, we can create s partitions out of s− 1 pivots.

Sedgewick considered the case s = 3 in his PhD thesis [2]. He proposed and
analyzed the implementation given in Algorithm 2. However, this dual pivot
Quicksort variant turns out to be clearly inferior to the much simpler classic
algorithm. Later, Hennequin studied the comparison costs for any constant s
in his PhD thesis [3], but even for arbitrary s ≥ 3, he found no improvements
that would compensate for the much more complicated partitioning step.1 These
negative results may have discouraged further research along these lines.

Recently, however, Yaroslavskiy proposed the new dual pivot Quicksort im-
plementation as given in Algorithm 3 at the Java core library mailing list2. He
? This research was supported by DFG grant NE 1379/3-1.
1 When s depends on n, we basically get the Samplesort algorithm from [4]. [5], [6]
or [7] show that Samplesort can beat Quicksort if hardware features are exploited.
[2] even shows that Samplesort is asymptotically optimal with respect to compar-
isons. Yet, due to its inherent intricacies, it has not been used much in practice.

2 The discussion is archived at http://permalink.gmane.org/gmane.comp.java.
openjdk.core-libs.devel/2628.

http://permalink.gmane.org/gmane.comp.java.openjdk.core-libs.devel/2628
http://permalink.gmane.org/gmane.comp.java.openjdk.core-libs.devel/2628

Algorithm 1 Implementation of classic Quicksort as given in [8] (see [2], [9]
and [10] for detailed analyses).
Two pointers i and j scan the array from left and right until they hit an element
that does not belong in their current subfiles. Then the elements A[i] and A[j]
are exchanged. This “crossing pointers” technique is due to Hoare [11], [1].

Quicksort(A, left , right)

// Sort the array A in index range left , . . . , right . We assume a sentinel A[0] = −∞.
1 if right − left ≥ 1
2 p := A[right] // Choose rightmost element as pivot
3 i := left − 1; j := right
4 do
5 do i := i+ 1 while A[i] < p end while
6 do j := j − 1 while A[j] > p end while
7 if j > i then Swap A[i] and A[j] end if
8 while j > i
9 Swap A[i] and A[right] // Move pivot to final position

10 Quicksort(A, left , i− 1)
11 Quicksort(A, i+ 1, right)
12 end if

Algorithm 1: ≤ p ≥ p?i

→
j

←

Algorithm 2: < p i1
→

p ≤ ◦ ≤ q i

→
? j

←
p ≤ ◦ ≤ q j1

←
> q

Algorithm 3: < p `

→
> qg

←
p ≤ ◦ ≤ q k

→
?

Figure 1. Comparison of the partitioning schemes of the three Quicksort variants dis-
cussed in this paper. The pictures show the invariant maintained in partitioning.

initiated a discussion claiming his new algorithm to be superior to the runtime
library’s sorting method at that time: the widely used and carefully tuned vari-
ant of classic Quicksort from [12]. Indeed, Yaroslavskiy’s Quicksort has been
chosen as the new default sorting algorithm in Oracle’s Java 7 runtime library
after extensive empirical performance tests.

In light of the results on multi-pivot Quicksort mentioned above, this is quite
surprising and asks for explanation. Accordingly, since the new dual pivot Quick-
sort variant has not been analyzed in detail, yet3, corresponding average case
results will be proven in this paper. Our analysis reveals the reason why dual
pivot Quicksort can indeed outperform the classic algorithm and why the par-
titioning method of Algorithm 2 is suboptimal. It turns out that Yaroslavskiy’s
partitioning method is able to take advantage of certain asymmetries in the out-

3 Note that the results presented in http://iaroslavski.narod.ru/quicksort/
DualPivotQuicksort.pdf provide wrong constants and thus are insufficient for our
needs.

2

http://iaroslavski.narod.ru/quicksort/DualPivotQuicksort.pdf
http://iaroslavski.narod.ru/quicksort/DualPivotQuicksort.pdf

Algorithm 2 Dual Pivot Quicksort with Sedgewick’s partitioning as proposed
in [2] (Program 5.1). This is an equivalent Java-like adaption of the original
ALGOL-style program.

DualPivotQuicksortSedgewick(A, left , right)

// Sort the array A in index range left , . . . , right . We assume a sentinel A[0] = −∞.
1 if right − left ≥ 1
2 i := left ; i1 := left ; j := right ; j1 := right ; p := A[left]; q := A[right]
3 if p > q then Swap p and q end if
4 while true
5 i := i+ 1
6 while A[i] ≤ q
7 if i ≥ j then break outer while end if // pointers have crossed
8 if A[i] < p then A[i1] := A[i]; i1 := i1 + 1; A[i] := A[i1] end if
9 i := i+ 1

10 end while
11 j := j − 1
12 while A[j] ≥ p
13 if A[j] > q then A[j1] := A[j]; j1 := j1 − 1; A[j] := A[j1] end if
14 if i ≥ j then break outer while end if // pointers have crossed
15 j := j − 1
16 end while
17 A[i1] := A[j]; A[j1] := A[i]
18 i1 := i1 + 1; j1 := j1 − 1
19 A[i] := A[i1]; A[j] := A[j1]
20 end while
21 A[i1] := p; A[j1] := q
22 DualPivotQuicksortSedgewick(A, left , i1 − 1)
23 DualPivotQuicksortSedgewick(A, i1 + 1, j1 − 1)
24 DualPivotQuicksortSedgewick(A, j1 + 1, right)
25 end if

comes of key comparisons. Algorithm 2 fails to utilize them, even though being
based on the same abstract algorithmic idea.

2 Results

In this paper, we give the first precise average case analysis of Yaroslavskiy’s
dual pivot Quicksort (Algorithm 3), the new default sorting method in Oracle’s
Java 7 runtime library. Using these original results, we compare the algorithm
to existing Quicksort variants: The classic Quicksort (Algorithm 1) and a dual
pivot Quicksort as proposed by Sedgewick in [2] (Algorithm 2).

Table 1 shows formulæ for the expected number of key comparisons and swaps
for all three algorithms. In terms of comparisons, the new dual pivot Quicksort by
Yaroslavskiy is best. However, it needs more swaps, so whether it can outperform
the classic Quicksort, depends on the relative runtime contribution of swaps and

3

Algorithm 3 Dual Pivot Quicksort with Yaroslavskiy’s partitioning method

DualPivotQuicksortYaroslavskiy(A, left , right)

// Sort the array A in index range left , . . . , right . We assume a sentinel A[0] = −∞.
1 if right − left ≥ 1
2 p := A[left]; q := A[right]
3 if p > q then Swap p and q end if
4 ` := left + 1; g := right − 1; k := `
5 while k ≤ g
6 if A[k] < p
7 Swap A[k] and A[`]
8 ` := `+ 1
9 else

10 if A[k] > q
11 while A[g] > q and k < g do g := g − 1 end while
12 Swap A[k] and A[g]
13 g := g − 1
14 if A[k] < p
15 Swap A[k] and A[`]
16 ` := `+ 1
17 end if
18 end if
19 end if
20 k := k + 1
21 end while
22 ` := `− 1; g := g + 1
23 Swap A[left] and A[`] // Bring pivots to final position
24 Swap A[right] and A[g]
25 DualPivotQuicksortYaroslavskiy(A, left , `− 1)
26 DualPivotQuicksortYaroslavskiy(A, `+ 1, g − 1)
27 DualPivotQuicksortYaroslavskiy(A, g + 1, right)
28 end if

Table 1. Exact expected number of comparisons and swaps of the three Quicksort
variants in the random permutation model. The results for Algorithm 1 are taken
from [10, p. 334] (for M = 1). Hn =

∑n
i=1

1
i
is the nth harmonic number, which is

asymptotically Hn = lnn+ 0.577216 . . .+O(n−1) as n→∞.

Comparisons Swaps

Classic Quicksort 2(n+ 1)Hn+1 − 8
3
(n+ 1) 1

3
(n+ 1)Hn+1 − 7

9
(n+ 1) + 1

2

(Algorithm 1) ≈ 2n lnn− 1.51n+O(lnn) ≈ 0.33n lnn− 0.58n+O(lnn)

Sedgewick 32
15
(n+ 1)Hn+1 − 856

225
(n+ 1) + 3

2
4
5
(n+ 1)Hn+1 − 19

25
(n+ 1)− 1

4

(Algorithm 2) ≈ 2.13n lnn− 2.57n+O(lnn) ≈ 0.8n lnn− 0.30n+O(lnn)

Yaroslavskiy 19
10
(n+ 1)Hn+1 − 711

200
(n+ 1) + 3

2
3
5
(n+ 1)Hn+1 − 27

100
(n+ 1)− 7

12

(Algorithm 3) ≈ 1.9n lnn− 2.46n+O(lnn) ≈ 0.6n lnn+ 0.08n+O(lnn)

4

comparisons, which in turn differ from machine to machine. Section 4 shows
some running times, where indeed Algorithm 3 was fastest.

Remarkably, the new algorithm is significantly better than Sedgewick’s dual
pivot Quicksort in both measures. Given that Algorithms 2 and 3 are based on
the same algorithmic idea, the considerable difference in costs is surprising. The
explanation of the superiority of Yaroslavskiy’s variant is a major discovery of
this paper. Hence, we first give a qualitative teaser of it. Afterwards, Section 3
gives a thorough analysis, making the arguments precise.

2.1 The Superiority of Yaroslavskiy’s Partitioning Method

Let p < q be the two pivots. For partitioning, we need to determine for every
x /∈ {p, q} whether x < p, p < x < q or q < x holds by comparing x to p and/or
q. Assume, we first compare x to p, then averaging over all possible values for p,
q and x, there is a 1/3 chance that x < p – in which case we are done. Otherwise,
we still need to compare x and q. The expected number of comparisons for one
element is therefore 1/3 · 1+ 2/3 · 2 = 5/3. For a partitioning step with n elements
including pivots p and q, this amounts to 5/3 ·(n−2) comparisons in expectation.

In the random permutation model, knowledge about an element y 6= x does
not tell us whether x < p, p < x < q or q < x holds. Hence, one could think
that any partitioning method should need at least 5/3 · (n − 2) comparisons in
expectation. But this is not the case.

The reason is the independence assumption above, which only holds true
for algorithms that do comparisons at exactly one location in the code. But
Algorithms 2 and 3 have several compare-instructions at different locations, and
how often those are reached depends on the pivots p and q. Now of course, the
number of elements smaller, between and larger p and q, directly depends on p
and q, as well! So if a comparison is executed often if p is large, it is clever to
first check x < p there: The comparison is done more often than on average if
and only if the probability for x < p is larger than on average. Therefore, the
expected number of comparisons can drop below the “lower bound” 5/3 for this
element!

And this is exactly, where Algorithms 2 and 3 differ: Yaroslavskiy’s parti-
tioning always evaluates the “better” comparison first, whereas in Sedgewick’s
dual pivot Quicksort this is not the case. In Section 3.3, we will give this a more
quantitative meaning based on our analysis.

3 Average Case Analysis of Dual Pivot Quicksort

We assume input sequences to be random permutations, i. e. each permutation π
of elements {1, . . . , n} occurs with probability 1/n!. The first and last elements
are chosen as pivots; let the smaller one be p, the larger one q.

Note that all Quicksort variants in this paper fulfill the following property:

Property 1. Every key comparison involves a pivot element of the current parti-
tioning step.

5

3.1 Solution to the Dual Pivot Quicksort Recurrence

In [13], Hennequin shows that Property 1 is a sufficient criterion for preserving
randomness in subfiles, i. e. if the whole array is a (uniformly chosen) random
permutation of its elements, so are the subproblems Quicksort is recursively
invoked on. This allows us to set up a recurrence relation for the expected costs,
as it ensures that all partitioning steps of a subarray of size k have the same
expected costs as the initial partitioning step for a random permutation of size k.

The expected costs Cn for sorting a random permutation of length n by any
dual pivot Quicksort with Property 1 satisfy the following recurrence relation:

Cn =
∑

1≤p<q≤n

Pr[pivots (p, q)] · (partitioning costs+ recursive costs)

=
∑

1≤p<q≤n

2

n(n− 1)
(partitioning costs+ Cp−1 + Cq−p−1 + Cn−q) ,

for n ≥ 3 with base cases C0 = C1 = 0 and C2 = d.4
We confine ourselves to linear expected partitioning costs a(n+1)+ b, where

a and b are constants depending on the kind of costs we analyze. The recurrence
relation can then be solved by standard techniques – the detailed calculations
can be found in Appendix A. The closed form for Cn is

Cn = 6
5a · (n+ 1)

(
Hn+1 − 1

5

)
+
(
− 3

2a+
3
10b+

1
10d

)
· (n+ 1)− 1

2b ,

which is valid for n ≥ 4 with Hn =
∑n

i=1
1
i the nth harmonic number.

3.2 Costs of One Partitioning Step

In this section, we analyze the expected number of swaps and comparisons used
in the first partitioning step on a random permutation of {1, . . . , n}. The results
are summarized in Table 2. To state the proofs, we need to introduce some
notation.

Table 2. Expected costs of the first partitioning step for the two dual pivot Quicksort
variants on a random permutation of length n (for n ≥ 3)

Comparisons Swaps

Sedgewick 16
9
(n+ 1)− 3− 2

3
1

n(n−1)
2
3
(n+ 1) + 1

2

(Algorithm 2)

Yaroslavskiy 19
12
(n+ 1)− 3 1

2
(n+ 1) + 7

6

(Algorithm 3)

4 d can easily be determined manually: For Algorithm 3, it is 1 for comparisons and 5
2

for swaps and for Algorithm 2 we have d = 2 for comparisons and d = 5
2
for swaps.

6

Notation Let S be the set of all elements smaller than both pivots, M those
in the middle and L the large ones, i. e.

S := {1, . . . , p− 1}, M := {p+ 1, . . . , q − 1}, L := {q + 1, . . . , n} .

Then, by Property 1 the algorithm cannot distinguish x ∈ C from y ∈ C for
any C ∈ {S,M,L}. Hence, for analyzing partitioning costs, we replace all non-
pivot elements by s, m or l when they are elements of S, M or L, respectively.
Obviously, all possible results of a partitioning step correspond to the same word
s · · · s pm · · ·mq l · · · l. The following example will demonstrate these definitions.

Example 1. Example permutation before . . .
p q

2 4 7 8 1 6 9 3 5
p m l l s l l m q

. . . and after partitioning.

1 2 4 3 5 6 9 8 7
s p m m q l l l l

Next, we define position sets S,M and L as follows:

S := {2, . . . , p},
M := {p+ 1, . . . , q − 1},
L := {q, . . . , n− 1} .

in the example:
S MM L L L L

2 4 7 8 1 6 9 3 5
1 2 3 4 5 6 7 8 9

Now, we can formulate the main quantities occurring in the analysis below: For
a given permutation, c ∈ {s,m, l} and a set of positions P ⊂ {1, . . . , n}, we
write c@P for the number of c-type elements occurring at positions in P of the
permutation. In our last example,M = {3, 4} holds. At these positions, we find
elements 7 and 8 (before partitioning), both belonging to L. Thus, l@M = 2,
whereas s@M = m@M = 0.

Now consider a random permutation. Then c@P becomes a random variable.
In the analysis, we will encounter the conditional expectation of c@P given that
the random permutation induces the pivots p and q, i. e. the first and last element
of the permutation are p and q or q and p, respectively. We abbreviate this
quantity as E [c@P | p, q]. As the number #c of c-type elements only depends
on the pivots, not on the permutation itself, #c is a fully determined constant
in E [c@P | p, q]. Hence, given pivots p and q, c@P is a hypergeometrically
distributed random variable: For the c-type elements, we draw their #c positions
out of n − 2 possible positions via sampling without replacement. Drawing a
position in P is a ‘success’, a position not in P is a ‘failure’.

Accordingly, E [c@P | p, q] can be expressed as the mean of this hypergeo-
metric distribution: E [c@P | p, q] = #c · |P|n−2 . By the law of total expectation,
we finally have

E [c@P] =
∑

1≤p<q≤n

E [c@P | p, q] · Pr[pivots (p, q)]

=
2

n(n− 1)

∑
1≤p<q≤n

#c · |P|
n− 2

.

7

Comparisons in Algorithm 3 Algorithm 3 contains five places where key
comparisons are used, namely in lines 3, 6, 10, 11 and 14. Line 3 compares the
two pivots and is executed exactly once. Line 6 is executed once per value for k
except for the last increment, where we leave the loop before the comparison is
done. Similarly, line 11 is run once for every value of g except for the last one.

The comparison in line 10 can only be reached, when line 6 made the ‘else’-
branch apply. Hence, line 10 causes as many comparisons as k attains values with
A[k] ≥ p. Similarly, line 14 is executed once for all values of g where A[g] ≤ q.5

At the end, q gets swapped to position g (line 24). Hence we must have g = q
there. Accordingly, g attains values G = {n− 1, n− 2, . . . , q} = L at line 11. We
always leave the outer while loop with k = g + 1 or k = g + 2. In both cases,
k (at least) attains values K = {2, . . . , q − 1} = S ∪ M in line 11. The case
“k = g + 2” introduces an additional term of 3 · n−qn−2 ; see Appendix B for the
detailed discussion.

Summing up all contributions yields the conditional expectation cp,qn of the
number of comparisons needed in the first partitioning step for a random per-
mutation, given it implies pivots p and q:

cp,qn = 1 + |K|+ |G|+
(
E [m@K | p, q] + E [l@K | p, q]

)
+
(
E [s@G | p, q] + E [m@G | p, q]

)
+ 3 · n−qn−2

= n− 1 +
(
(q − p− 1) + (n− q)

) q − 2

n− 2

+
(
(p− 1) + (q − p− 1)

)n− q
n− 2

+ 3 · n−qn−2

= n− 1 +
(
n− p− 1

) q − 2

n− 2
+
(
q + 1

)n− q
n− 2

.

Now, by the law of total expectation, the expected number of comparisons in
the first partitioning step for a random permutation of {1, . . . , n} is

cn := E cp,qn = 2
n(n−1)

n−1∑
p=1

n∑
q=p+1

cp,qn

= n− 1 + 2
n(n−1)(n−2)

n−1∑
p=1

(n− p− 1)

n∑
q=p+1

(q − 2)

+ 2
n(n−1)(n−2)

n∑
q=2

(n− q)(q + 1)

q−1∑
p=1

1

= n− 1 +
(

5
12 (n+ 1)− 4

3

)
+ 1

6 (n+ 3) = 19
12 (n+ 1)− 3 .

5 Line 12 just swapped A[k] and A[g]. So even though line 14 literally says “A[k] < p”,
this comparison actually refers to an element first reached as A[g].

8

Swaps in Algorithm 3 Swaps happen in Algorithm 3 in lines 3, 7, 12, 15, 23
and 24. Lines 23 and 24 are both executed exactly once. Line 3 once swaps the
pivots if needed, which happens with probability 1/2. For each value of k with
A[k] < p, one swap occurs in line 7. Line 12 is executed for every value of k
having A[k] > q. Finally, line 15 is reached for all values of g where A[g] < p
(see footnote 5).

Using the rangesK and G from above, we obtain sp,qn , the conditional expected
number of swaps for partitioning a random permutation, given pivots p and q.
There is an additional contribution of n−q

n−2 when k stopps with k = g+2 instead
of k = g+1. As for comparisons, its detailed discussion is deferred to Appendix B.

sp,qn = 1
2 + 1 + 1 + E [s@K | p, q] + E [l@K | p, q] + E [s@G | p, q] + n−q

n−2

= 5
2 + (p− 1)

q − 2

n− 2
+ (n− q) q − 2

n− 2
+ (p− 1)

n− q
n− 2

+ n−q
n−2

= 5
2 + (n+ p− q − 1)

q − 2

n− 2
+ p · n− q

n− 2
.

Averaging over all possible p and q again, we find

sn := E sp,qn = 5
2 + 2

n(n−1)(n−2)

n∑
q=2

(q − 2)

q−1∑
p=1

(n+ p− q − 1)

+ 2
n(n−1)(n−2)

n∑
q=2

(n− q)
q−1∑
p=1

p

= 5
2 +

(
5
12 (n+ 1)− 4

3

)
+ 1

12 (n+ 1) = 1
2 (n+ 1) + 7

6 .

Comparisons in Algorithm 2 Key comparisons happen in Algorithm 2 in
lines 3, 6, 8, 12 and 13. Lines 6 and 12 are executed once for every value of
i respectively j (without the initialization values left and right respectively).
Line 8 is reached for all values of i with A[i] ≤ q except for the last value.
Finally, the comparison in line 13 gets executed for every value of j having
A[j] ≥ p.

The value-ranges of i and j are I = {2, . . . , ı̂} and J = {n− 1, n− 2, . . . , ı̂}
respectively, where ı̂ depends on the positions of m-type elements. So, lines 6
and 12 together contribute |I|+ |J | = n− 1 comparisons. For lines 8 and 13, we
get additionally(

E [s@ I ′ | p, q] + E [m@ I ′ | p, q]
)
+
(
E [m@J | p, q] + E [l@J | p, q]

)
many comparisons (in expectation), where I ′ := I \ ı̂. As i and j cannot meet
on an m-type element (both would not stop), m@ {ı̂} = 0, so

E [m@ I ′ | p, q] + E [m@J | p, q] = q − p− 1 .

Positions of m-type elements do not contribute to s@ I ′ (and l@J) by def-
inition. Hence, it suffices to determine the number of non-m-elements located

9

Table 3. E [c@P] for c = s,m, l and P = S,M,L.

S M L

s 1
6
(n− 1) 1

12
(n− 3) 1

12
(n− 3)

m 1
12
(n− 3) 1

6
(n− 1) 1

12
(n− 3)

l 1
12
(n− 3) 1

12
(n− 3) 1

6
(n− 1)

at positions in I ′. A glance at Figure 1 suggests to count non-m-type elements
left of (and including) the last value of i1, which is p. So, the first p − 1 of
all (p − 1) + (n − q) non-m-positions are contained in I ′, thus E [s@ I ′ | p, q] =
(p − 1) p−1

(p−1)+(n−q) . Similarly, we can show that l@J is the number of l-type
elements right of i1’s largest value: E [l@J | p, q] = (n−q) n−q

(p−1)+(n−q) . Summing
up all contributions, we get

c′p,qn = n− 1 + q − p− 1 + (p− 1) p−1
(p−1)+(n−q) + (n− q) n−q

(p−1)+(n−q) .

Taking the expectation over all possible pivot values yields

c′n = 2
n(n−1)

n−1∑
p=1

n∑
q=p+1

c′
p,q
n = 16

9 (n+ 1)− 3− 2
3

1
n(n−1) .

This is not a linear function and hence does not directly fit our solution of the
recurrence from Section 3.1. The exact result given in Table 1 is easily proven
by induction. Dropping summand − 2

3
1

n(n−1) and inserting the linear part into
the recurrence relation, still gives the correct leading term; in fact, the error is
only 1

90 (n+ 1).

Swaps in Algorithm 2 The expected number of swaps has already been ana-
lyzed in [2]. There, it is shown that Sedgewick’s partitioning step needs 2

3 (n+1)
swaps, on average – excluding the pivot swap in line 3. As we count this swap for
Algorithm 3, we add 1

2 to the expected value for Algorithm 2, for consistency.

3.3 Superiority of Yaroslavskiy’s Partitioning Method – Continued

In this section, we abbreviate E [c@P] by EPc for conciseness. It is quite enlight-
ening to compute EPc for c = s,m, l and P = S,M,L, see Table 3: There is
a remarkable asymmetry, e. g. averaging over all permutations, more than half
of all l-type elements are located at positions in L. Thus, if we know we are
looking at a position in L, it is much more advantageous to first compare with q,
as with probability > 1

2 , the element is > q. This results in an expected number
of comparisons < 1

2 · 2 +
1
2 · 1 = 3

2 <
5
3 . Line 11 of Algorithm 3 is exactly of this

type. Hence, Yaroslavskiy’s partitioning method exploits the knowledge about
the different position sets comparisons are reached for. Conversely, lines 6 and 12
in Algorithm 2 are of the opposite type: They check the unlikely outcome first.

10

We can roughly approximate the expected number of comparisons in Algo-
rithms 2 and 3 by expressing them in terms of the quantities from Table 3 (using
K = S ∪M, G ≈ L and EI

′

s + EJl ≈ ESs + ELl + EMs):

c′n = n− 1 + E#m + EI
′

s + EJl

≈ n +
(
ESm + EMm + ELm

)
+
(
ESs + ELl + EMs

)
≈ (1 + 3 · 1

12 + 3 · 16)n ≈ 1.75n (exact: 1.78n− 1.22 + o(1))

cn = n+ EKm + EKl + EGs + EGm

≈ n+
(
ESm + EMm

)
+
(
ESl + EMl

)
+ ELs + ELm

≈ (1 + 5 · 1
12 + 1 · 16)n ≈ 1.58n (exact: 1.58n− 0.75)

Note that both terms involve six ‘EPc -terms’, but Algorithm 2 has three ‘expen-
sive’ terms, whereas Algorithm 3 only has one such term.

4 Some Running Times

Extensive performance tests have already been done for Yaroslavskiy’s dual pivot
Quicksort. However, those were based on an optimized implementation intended
for production use. In Figure 2, we provide some running times of the basic
variants as given in Algorithms 1, 2 and 3 to directly evaluate the algorithmic
ideas, complementing our analysis.

Note: This is not intended to replace a thorough performance study, but
merely to demonstrate that Yaroslavskiy’s partitioning method performs well –
at least on our machine.

ææææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

àààà

à

à

à

à

à

à

à

à

à

ìììì

ì

ì

ì

ì

ì

ì

ì

ì

ì

0 500 000 1.0 × 10 6 1.5 × 10 6 2.0 × 10 6
n0

50

100

150

200

250

300
ms

ì Yaroslavskiy

à Sedgewick

æ Classic

Figure 2. Running times of Java implementations of Algorithms 1, 2 and 3 on an Intel
Core 2 Duo P8700 laptop. The plot shows the average running time of 1000 random
permutations of each size.

11

5 Conclusion and Future Work

Having understood how the new Quicksort saves key comparions, there are plenty
of future research directions. The question if and how the new Quicksort can
compensate for the many extra swaps it needs, calls for further examination. One
might conjecture that comparisons have a higher runtime impact than swaps. It
would be interesting to see a closer investigation – empirically or theoretically.

In this paper, we only considered the most basic implementation of dual pivot
Quicksort. Many suggestions to improve the classic algorithm are also applicable
to it. We are currently working on the effect of selecting the pivot from a larger
sample and are keen to see the performance impacts.

Being intended as a standard sorting method, it is not sufficient for the new
Quicksort to perform well on random permutations. One also has to take into
account other input distributions, most notably the occurrence of equal keys or
biases in the data. This might be done using Maximum Likelihood Analysis as
introduced in [14], which also helped us much in discovering the results of this
paper. Moreover, Yaroslavskiy’s partitioning method can be used to improve
Quickselect. Our corresponding results are omitted due to space constraints.

References

1. Hoare, C.A.R.: Quicksort. The Computer Journal 5(1) (January 1962) 10–16
2. Sedgewick, R.: Quicksort. PhD Thesis, Stanford University (1975)
3. Hennequin, P.: Analyse en moyenne d’algorithmes : tri rapide et arbres de

recherche. PhD Thesis, Ecole Politechnique, Palaiseau (1991)
4. Frazer, W.D., McKellar, A.C.: Samplesort: A Sampling Approach to Minimal

Storage Tree Sorting. Journal of the ACM 17(3) (July 1970) 496–507
5. Sanders, P., Winkel, S.: Super Scalar Sample Sort. In Albers, S., Radzik, T., eds.:

ESA 2004. LNCS, vol. 3221, Springer Berlin/Heidelberg (2004) 784–796
6. Leischner, N., Osipov, V., Sanders, P.: GPU sample sort. In: 2010 IEEE Interna-

tional Symposium on Parallel Distributed Processing IPDPS, IEEE (2009) 1–10
7. Blelloch, G.E., Leiserson, C.E., Maggs, B.M., Plaxton, C.G., Smith, S.J., Zagha,

M.: A comparison of sorting algorithms for the connection machine CM-2. In: An-
nual ACM symposium on Parallel algorithms and architectures, New York, USA,
ACM Press (June 1991) 3–16

8. Sedgewick, R.: Implementing Quicksort programs. Communications of the ACM
21(10) (October 1978) 847–857

9. Sedgewick, R.: Quicksort with Equal Keys. SIAM Journal on Computing 6(2)
(1977) 240–267

10. Sedgewick, R.: The analysis of Quicksort programs. Acta Inf. 7(4) (1977) 327–355
11. Hoare, C.A.R.: Algorithm 63: Partition. Communications of the ACM 4(7) (July

1961) 321
12. Bentley, J.L.J., McIlroy, M.D.: Engineering a sort function. Software: Practice and

Experience 23(11) (1993) 1249–1265
13. Hennequin, P.: Combinatorial analysis of Quicksort algorithm. Informatique

théorique et applications 23(3) (1989) 317–333
14. Laube, U., Nebel, M.E.: Maximum likelihood analysis of algorithms and data

structures. Theoretical Computer Science 411(1) (January 2010) 188–212

12

A Solution of the Dual Pivot Quicksort Recurrence

The presented analysis is a generalization of the derivation given by Sedgewick
in [2, p. 156ff]. In [3], Hennequin gives an alternative approach based on gen-
erating functions that is much more general. Even though the authors consider
Hennequin’s method more elegant, we prefer the elementary proof, as it allows
a self-contained presentation.

The expected costs Cn for sorting a random permutation of length n by any
dual pivot Quicksort fulfilling Property 1 satisfy the following recurrence relation
(for n ≥ 2):

Cn =
∑

1≤p<q≤n

Pr[pivots (p, q)] · (partitioning costs+ recursive costs)

=
∑

1≤p<q≤n

2

n(n− 1)
(partitioning costs+ Cp−1 + Cq−p−1 + Cn−q)

= Epartitioning costs+
2

n(n− 1)
· 3

n−2∑
k=0

(n− k − 1)Ck .

(The last equation follows from splitting up the sum and shifting indices.)
As both algorithms skip subfiles of length ≤ 1, the base case is C0 = C1 = 0.

We will solve this recurrence relation for linear expected partitioning costs
a(n + 1) + b, where a and b are constants depending on the kind of costs we
analyze. It turns out that the costs for (sub)lists of length n = 2 do not fit the
linear pattern. Hence, we add C2 = d as an additional base case and use the
recurrence for n ≥ 3.

We first consider Dn :=
(
n+1
2

)
Cn+1 −

(
n
2

)
Cn to get rid of the factor in the

sum:

Dn =
(
n+1
2

)(
a(n+ 2) + b

)
−
(
n
2

)(
a(n+ 1) + b

)
+ (n+1)n

2
6

(n+1)n

n−1∑
k=0

(n− k)Ck − n(n−1)
2

6
n(n−1)

n−2∑
k=0

(n− k − 1)Ck

= 3
(
n+1
2

)
a+ n · b+ 3

n−1∑
k=0

Ck . (n ≥ 3)

The remaining full history recurrence can be solved by taking ordinary differences
En := Dn+1 −Dn = 3(n + 1)a + b + 3Cn for n ≥ 3. Using the definition of En

and some tedious, yet elementary rearrangements we find

(En − 3Cn)
/ (

n+2
2

)
= Cn+2 − 2n

n+2Cn+1 +
n−3
n+1Cn .

Considering yet another quantity Fn := Cn − n−4
n ·Cn−1, one easily checks that

Fn+2 − Fn+1 = Cn+2 − 2n
n+2Cn+1 +

n−3
n+1Cn holds, such that we conclude

Fn+2 − Fn+1 = (En − 3Cn)
/ (

n+2
2

)
=
(
3(n+ 1)a+ b

) / (
n+2
2

)
. (n ≥ 3)

13

This last equation is now amenable to simple iteration:

Fn =

n∑
i=5

(
3(i− 1)a+ b

) /(
i
2

)
+ F4

=

n∑
i=5

3(i− 1)a
1
2 i(i− 1)

+

n∑
i=5

b
1
2 i(i− 1)

+ F4

= 6a

n∑
i=5

1
i + 2b

n∑
i=5

(
1

i−1 −
1
i

)
+ F4

= 6a(Hn −H4) + 2b
(
1
4 −

1
n

)
+ F4 . (n ≥ 5)

(Hn :=
∑n

i=1
1/i is the nth harmonic number.)

Plugging in the definition of Fn = Cn − n−4
n · Cn−1 yields

Cn = n−4
n · Cn−1 + 6a(Hn −H4) + 2b

(
1
4 −

1
n

)
+ F4 .

Multiplying by
(
n
4

)
and using

(
n
4

)
· n−4n =

(
n−1
4

)
gives a telescoping recurrence

for Gn :=
(
n
4

)
Cn:

Gn = Gn−1 + 6a(Hn −H4)
(
n
4

)
+ 2b

(
1
4 −

1
n

) (
n
4

)
+ F4

(
n
4

)
=

n∑
i=5

[
6a(Hi −H4)

(
i
4

)
+ 2b

(
1
4 −

1
i

) (
i
4

)
+ F4

(
i
4

)]
+G4

=

n∑
i=1

[
6a(Hi −H4)

(
i
4

)
+ 2b

(
1
4 −

1
i

) (
i
4

)
+ F4

(
i
4

)]
−F4

(
4
4

)
+G4︸ ︷︷ ︸

=0

= 6a

n∑
i=1

Hi

(
i
4

)
+ (12b− 6H4a+ F4)

n∑
i=1

(
i
4

)
− 2b

n∑
i=1

1
i

(
i
4

)
= 6a

(
n+1
5

) (
Hn+1 − 1

5

)
+ (12b− 6H4a+ F4)

(
n+1
5

)
− 2b

n∑
i=1

1
4

(
i−1
3

)
= 6a

(
n+1
5

) (
Hn+1 − 1

5

)
+ (12b− 6H4a+ F4)

(
n+1
5

)
− 1

2b
(
n
4

)
.

Finally, we arrive at an explicit formula for Cn valid for n ≥ 4:

Cn = Gn

/(
n
4

)
= 6

5a · (n+ 1)
(
Hn+1 − 1

5

)
+ (1

10b−
6
5H4a+

1
5F4) · (n+ 1)− 1

2b .

Using F4 = 5a+ b+ 1
2d, this simplifies to the claimed closed form

Cn = 6
5a · (n+ 1)

(
Hn+1 − 1

5

)
+
(
− 3

2a+
3
10b+

1
10d

)
· (n+ 1)− 1

2b .

14

B Explanation for the Curious n−q
n−2

Terms

All Quicksort variants studied in this paper perform partitioning by some variant
of Hoare’s “crossing pointers technique”. This technique gives rise to two different
cases for “crossing”: As the pointers are moved alternatingly towards each other,
one of them will reach the crossing point first – waiting for the other to arrive.

The asymmetric nature of Algorithm 3 leads to small differences in the num-
ber of swaps and comparisons in these two cases: If the left pointer k moves
last, we always leave the outer loop of Algorithm 3 with k = g + 1 since the
loop continues as long as k ≤ g and k increases by one in each iteration. If g
moves last, we decrement g and increment k, so we can end up with k = g + 2.
Consequently, operations that are executed for every value of k experience one
additional occurrence.

To precisely analyze the impact of this behavior, the following equivalence is
useful.

Lemma 1. Let A[1], . . . , A[n] contain a random permutation of {1, . . . , n}. Then,
Algorithm 3 leaves the outer loop with k = g+2 (at line 21) iff initially A[q] > q
holds, where q = max{A[1], A[n]} is the large pivot.

For conciseness, we will abbreviate “Algorithm 3 leaves the loop with k = g+ i ”
as “Case i ” for i = 1, 2.

Proof. Assume Case 2 occurs, i. e. the loop is left with a difference of 2 between
k and g. This difference can only show up when both k is inremented and g is
decremented. Hence, in the last iteration we must have entered the else-if-branch
in line 10 and accordingly A[k] > q must have held there.

Recall that in the end, q is moved to position g, so when the loop is left, at
line 21 we have g = q− 1. By assumption, we are in Case 2, so k = g+2 = q+1
here. As k has been increased once since the last test in line 10, we know that
A[q] > q, as claimed.

Assume conversely that A[q] > q. As g stops at q − 1 and is always decre-
mented in line 13, we have g = q for the last execution of line 12. By assumption
A[g] = A[q] > q, so the loop in line 11 must have been left because of a violation
of condition “k < g”. This implies k ≥ g = q in line 12. With the following
decrement of g and increment of k, we leave the loop with k ≥ g + 2, so we are
in Case 2. ut

Lemma 1 immediately implies that Case 2 occurs with probability n−q
n−2 , given

pivots p and q: For q < n, there are n−2 elements that can possibly take position
A[q] and n− q of them are > q. For q = n, we never have A[q] > q and n−q

n−2 = 0.

Additional Contributions to Comparisons In Algorithm 3, the comparison
in line 6 is executed once for every value of k. Hence, we get an additional
contribution of one for Case 2. For the conditional expectation cp,qn , we get an
additional summand 1 · Pr[Case 2] = n−q

n−2 .

15

Line 10 is reached for every value of k with A[k] ≥ p. By Lemma 1, Case 2 is
equivalent to A[q] > q > p, hence the comparison in line 10 is executed exactly
once more for k = q. This is another contribution of n−q

n−2 to cp,qn .
Finally, line 14 is executed for all values of g with A[g] ≤ q plus one additional

time in Case 2: As argued in the proof of Lemma 1, in Case 2, we always quit the
last execution of the loop in line 11 because of condition “k < g”, as the other
condition is guaranteed to hold. Consequently, we get an execution of line 14 for
g = q even though A[g] > q. This comparison is not accounted for by the terms
E [s@G | p, q] + E [m@G | p, q] discussed in the main text. Hence, it entails an
additional contribution of n−q

n−2 for cp,qn

The expected number of executions of line 11, |G|, is not affected by Case 2,
so no additional term, here. Summing up, we have 3· n−qn−2 additional comparisons
that have not been taken into account by the discussion in the main text.

Additional Contributions to Swaps Line 7 is executed for values of k with
A[k] < p. In Case 2, k attains one more value, namely k = q. Nevertheless, for
this new value of k, we do not reach line 7, as Lemma 1 tells us that A[q] > q > p.

The swap in line 12 is always followed by line 14, so these lines are visited
equally often. As shown above, line 14 causes an additional contribution of n−q

n−2 .
Finally, the expected number of executions of line 15, E [s@G | p, q], is not

affected by Case 2, as G is the same in Case 1 and 2.
In summary, we find an additional contribution of n−q

n−2 to sp,qn .

16

	Average Case Analysis of Java7's Dual Pivot Quicksort

