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Abstract

The secondary structure of a RNA molecule is of great importance
and possesses influence, e.g. on the interaction of tRNA molecules with
proteins or on the stabilization of mRNA molecules. The classification of
secondary structures by means of their order proved useful with respect
to numerous applications. In 1978 Waterman, who gave the first precise
formal framework for the topic, suggested to determine the number a, , of
secondary structures of size n and given order p. Since then, no satisfactory
result has been found. Based on an observation due to Viennot et al. we
will derive generating functions for the secondary structures of order p
from generating functions for binary tree structures with Horton-Strahler
number p. These generating functions enable us to compute a precise
asymptotic equivalent for a, . Furthermore, we will determine the related
number of structures when the number of unpaired bases shows up as
an additional parameter. Our approach proves to be general enough to
compute the average order of a secondary structure together with all the
r-th moments and to enumerate substructures such as hairpins or bulges
in dependence on the order of the secondary structures considered.

1 Introduction and Definitions

In this paper we consider combinatorial models for molecules of single-stranded
nucleic acids like RNA, mRNA (messenger RNA) or tRNA (transfer RNA). The
sequence of bases of such a molecule is known as its primary structure and is usu-
ally encoded by a word on the alphabet {A, U, G, C'}, where the different letters
represent the involved bases Adenine, Uracyl, Guanine and Cytosine. This linear



structure is created by phosphodiester bounds between the bases. Since the bases
can additionally be linked together by hydrogen bounds (Adenine with Uracyl
and Guanine with Cytosine) the primary structure is folded into a planar graph
which is called the secondary structure of the molecule. Figure 1 shows an ex-
ample for such a graph. The secondary structure plays a role in the interaction

Figure 1: An example for a secondary structure. Fach node of the graph repre-
sents one of the bases, a thick edge represents a phosphodiester bound, a thin
edge represents a hydrogen bound.

of tRNA with proteins [19], in stabilizing mRNA and in packing RNA into virus
particles. Many authors have payed attention to the prediction of the secondary
structure from the knowledge of the primary structure. The general approach
has been to search for configurations of minimum free energy. The working
hypothesis which makes the evaluation of the free energy E(S) of structure S
feasible is that if we decompose S into disjoint substructures S, Ss,..., S, then
E(S) = e(S1) + e(S2) + -+ - + e(S;) where e(S;) denotes the energetic contribu-
tion of substructure S;. One possible approach for the efficient prediction of the
secondary structure is based on the notion of order of a structure introduced
in [24] (see also [16], [9]). The prediction-algorithm first constructs an optimal
first-order structure. Then, using the results from the previous pass, successively
higher order structures are computed in an iterative way. The algorithms of Wa-
terman [24] and Mainville [15] can be seen to work this way.

Here we will focus on enumeration problems which are related to the secondary
structure of single-stranded nucleic acids. This sort of studies has a long history
starting with the investigations of Waterman [26] who gave the first formal frame-
work for the topic [24]. As shown in [22] the sequences arising in the enumeration
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of secondary structures which can occur under various reasonable restrictions may
be considered as natural generalizations of the Catalan and Motzkin numbers.
For most of the problems considered one finds similar decomposition patterns.
This observation is used in [11] to describe algorithms and techniques for comput-
ing generating functions for certain RNA configurations. Like in our paper, the
authors of [21] use different one-to-one correspondences between secondary struc-
tures and trees to derive enumeration results. Based on the traditional approach,
i.e. based on the determination of recurrence relations from decomposition prop-
erties of the objects, the authors of [10] obtain several enumeration results for
restricted configurations of secondary structures. Recently, Régnier showed how
symbolic enumeration methods allow to simplify and extend previous results [20].
We will first recall the related definitions as introduced in [24]. Afterwards it will
be possible to state precisely which problems are to be considered here. In the
sequel we will forget about the different bases that emerge in the secondary struc-
tures. We will change to a complete combinatorial point of view where only the
topology of the planar secondary structure is considered.

Definition 1 ([24]) A secondary structure of size n is a loop free graph on the
set of n labeled points {1,2,...,n} such that the adjacency matriz A = (a;;) has
the following three properties:

(i) ajjiy1=1for1 <i<n-—1.
(it) For each fized i, 1 < i <mn, there is at most one a;; =1 where j # i+ 1.
i) Ifa;; = agy; =1, where i < k < j, then i <[ < j.
i) If a; j =1, wherei <k < j, theni <1<y
Ifa;; =1, i and j are said to be bounded.

Please note that part (iii) of this definition ensures that the structure remains
planar.

Definition 2 ([24]) Suppose A is the adjacency matriz for a secondary structure
of size n.

(i) The point j is said to be paired if there is some point i # j + 1 such that
ai,j =1.

(i) The sequence i+ 1,i+2,...,5 — 1 is aloop, if i + 1,i+2,...,5 — 1 are
all unpaired and a; j = 1. The pair (i,7) is said to be the foundation of the
loop.

(iii) The sequencei+1,i+2,...,j—1isabulge ifi+1,i+2,...,5—1 are all
unpaired, © and j are both paired, and a; ; # 1.

(iv) A tail is a sequence 1,2,...,j resp. 7,7+ 1,...,n where 1,2,...,j resp.
J,7+1,...,n are unpaired and j + 1 resp. j — 1 1s paired.



(v) Aladder is built by two sequences i+1,i+2,... i+j and k+1,k+2, ... k+j
such that 1 + 7 +1 <k, ajyiprj_i41 = 1 for 1 <1 < 3, ajprjy1 = 0 and
Qivjyre = 0. If i + 54+ 3 =k + 1, then this last requirement is dropped.

(vi) A hairpin is the longest sequence i + 1,i+2,...,j — 1 containing exactly
one loop such that a;11 ;-1 = 1 and a;; = 0. The paired points i + 1 and
j — 1 will be called the foundation of the hairpin.

In a certain sense, the substructures previously defined can be considered as the
building blocks for a secondary structure as can be seen be the next theorem.

Theorem 1 ([24]) Any secondary structure can be uniquely decomposed into
loops, ladders, bulges and tails. Alternatively, every secondary structure can be
uniquely decomposed into hairpins and ladders, bulges, and tails which are not
members of a hairpin.

Next we will classify secondary structures by a certain complexity criterion.

Definition 3 ([24]) Let A be the adjacency matriz of a secondary structure. A
sequence AW of adjacency matrices of secondary structures is formed as follows:

(i) AQ = A,

(i) We get AWV from AD by setting agjl) = a§f,j” := 0 whenever a,(:,)l =
al(flz =1, k and [ are members of some hairpin, and k # 1 £ 1.
The secondary structure for A is said to be of k-th order if A®) is the first matriz
in the sequence { AW}, that has no hairpins.

In [24] it is proven that every secondary structure possesses a unique order. Fur-
thermore, the number a,; of secondary structures of size n and order 1 was
determined. The enumeration of the number a,,, of secondary structures of size
n and order p was left open. Since then, several authors addressed to this prob-
lem. Viennot and Vauchaussade de Chaumont [23] used a methodology due to
Schiitzenberger in order to prove the following:

Theorem 2 ([23]) The generating function s,(t) 1= 3,50 npt™ of secondary
structures of order p s
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where Zy(t), ..., Z,(t) are the polynomials defined by the recurrence

Zy(t) =1 -2t — 1, Z, (1) = Z2(1) — 267



Unfortunately, no representation for the coefficient a,,, was concluded. Recently
Hofacker et al. [10] had a paper where they considered enumeration problems
related to RNA secondary structures and especially the number of secondary
structures of size n and order p. However, they also did not get satisfactory
results. In the present paper we will give a precise asymptotic estimated for
the number a,, and also for the number a,,,, of secondary structures of order
p built from n paired and m unpaired bases. Furthermore, we will derive the
expected order of a secondary structure of size n, the related variance and the
r-th moments which will also be computed for secondary structures of size n and
m unpaired bases. Finally, we will determine the average number of hairpins and
bulges in secondary structures of size n and in secondary structures of size n and
order p and the corresponding expected length of the loops involved. For our
presentation we will assume that the reader is familiar with generating functions
and the tools usually denoted as singularity analysis. For details on that topics
please refer to [7] and [6].

2 A Connection between Secondary Structures
and Binary Trees

In this section we will present the connection between secondary structures and
binary trees which will be the main tool for all the investigations that will be pre-
sented in the subsequent sections. For that purpose we first recall an equivalent
definition for secondary structures which was introduced in [23]:

Definition 4 For X :={(,],)} and w € ¥* let |w|, for x € ¥ denote the number
of occurrences of symbol x in w. Then a word w € X" is a secondary structure
of size n if w satisfies the three following conditions:

(1) For every factorization w = u - v, |u|c > |ul).

(2) |wl¢= |wl.

(3) w has no factor ().
Within this notation a pair of corresponding brackets within a word w represents
two bases of the single-stranded nucleic acid which are paired. The symbol |

represents an unpaired base. For example, the secondary structure of Figure 1 is
represented by the word

[CCCCCTCCCTMCCCCTECCCTTHMIMMMICCTHTICTMIIDI)I

The words of ¥*, which satisfy the conditions (1) and (2) of the previous defini-
tion, are called Motzkin words. Condition (3) accommodates the fact, that two
adjacent bases cannot be linked together by a hydrogen bound. Now let o denote



the homomorphism which deletes all symbols | in a word w € ¥*. Then for each
secondary structure w, a(w) is a semi Dyck-word, i.e. a word over the alphabet
{(,)} which fulfills the conditions (1) and (2) of Definition 4. The following one-
to-one correspondence of semi Dyck-words of length 2n and ordered binary trees
with n nodes is well-known (see e.g. [27]):

O

(u)o = /\ .
u v

To put the meaning of this symbolic notation into words, the first bracket in
the semi Dyck-word together with its corresponding closing bracket represent
the root of the tree, the subword u (resp. v) represents the left (resp. right)
subtree (and vice versa). Note, that u and v are semi Dyck-words so that this
correspondence is continued recursively. We get a one-to-one correspondence of
secondary structures and ordered unary/binary trees by considering the inverse
homomorphism a~!. For D the semi Dyck-language and S the language of all
secondary structures we find that 8 := a~'(D) NS implies the following cases:
O-=FHF Qv P @S @l (e e
These cases correspond to the following transformations for trees one-to-one:

@

! !
© Q

2 O

O O

Here, a light shaded node descends from the pair of brackets occuring in the
corresponding transformation of a semi Dyck-word. A dark shaded node must be
inserted since the appropriate list complies with |* whereas the insertion of the
non-shaded nodes is not mandatory as indicated by the dotted edges.

Let b(t) (resp. u(t); 1(t)) denote the number of nodes of an extended binary
tree ¢ with two successors which are no leaves (resp. with one successor which is
no leaf; with two successors which are leaves). In a recent work [17] the author
presents a unified analysis of the so-called Horton-Strahler parameters of binary

6



tree structures. In this paper it is proven, that the ordinary generating functions
T(z,u,v) = Y7 z*Du D! and Ry(z,u,v) := Yier 2®Dur®!® for T the
set of all extended binary trees and 7, the set of those ¢ € 7 which have a
Horton-Strahler number of p possess the following representations:

1—2u—+vV1—4du+4u2—4zv
2x ’

Rotene) =~ 20 (5 ) = G o

for U, (z) the n-th Chebyshev polynomial of the second kind (see e.g. [1]) and w :=

-1
<1 —./1—4 T o 2 > <1 +./1—-4 (1‘”2”u)2> . Since these generating functions

keep track of the different types of internal nodes it becomes possible to translate
the above transformations, which make a binary tree (a semi Dyck-word) to
become a model for a secondary structure, into substitutions for the variables.
For example, consider the leftmost case of the transformations in which a single
node has to be expanded in such a way that it becomes a node with three lists
attached to it, one of these lists must consist of at least one node. If we let z
mark an opening or closing bracket within a secondary structure and if we let a
mark a symbol | then this transformation can be considered by setting

T(z,u,v) =

2 a
(1—a)*’

since a single node in the class of binary trees corresponds to a node with two
successors that are leaves in the class of extended binary trees and thus variable
v is the one which marks the appropriate node within the generating functions
T and R,. In the same way, the second and the third transformation correspond

to the substitution
14 a n 1
U= -2z .
2 (1—a)? (1—a)?

The rightmost transformation is considered via

vVi=2

Therefore, the ordinary generating function of all secondary structures where a
paired (resp. unpaired) base is marked by z (resp. a) becomes

1—2a+a*—2%—22 a—(1—a)\/1—222—222a—2a+a2+z4
222 (1 — a)

T(z,a) =

In [23] it was shown, that the number of words of size 2n in a(S,), for S, the
set, of all secondary structures of order p, equals the number of binary trees with
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n internal nodes and a Horton-Strahler number of p. Thus our substitutions
applied to R,(z,u,v) lead to a representation for the generating function of all
secondary structures of order p. We find
va o [ =(
Rp(z, a) = a— 1U2p1_1
va(l—w)w?
(1-a)vw(l—w”)

forw:=(1—-¢)(1+¢) ", e:= \/1 - 4((a_1)2fﬁ+a)z2)2.

Please note, that the generating functions T'(z, u,v) and R,(x, u, v) do not count
the empty tree. Thus, after substituting the variables, the completely linear sec-
ondary structure is not considered.

Remark: The correspondence given above does not work in a way which trans-
lates each binary tree with Horton-Strahler number p into a secondary structure
of order p and vice versa. However, each binary tree with Horton-Strahler num-
ber p is translated into a secondary structure w which has the same number of
paired and unpaired bases and the same number of subwords () within «(w) as
the suitable structure of order p. Therefore the correspondence can be used for
all enumeration purposes considered in this paper.

a— 1)2+(1+a)22> 1)

222\/a

(2)

In the subsequent sections we will use these generating functions in order to derive
numerous results on combinatorial properties of secondary structures.

3 The Number of Structures of Order p

In [24] Waterman raised the question of determining the number a,, , of secondary
structures of size n and order p. Assuming that the prediction of the secondary
structure is performed as described in the introduction this is equivalent to de-
termine the size of the configuration space over which the search for the optimal
secondary structure is to be performed for the corresponding iteration. Several
attempts were made to solve this problem (see e.g. [23],[10]) but so far, no sat-
isfactory solution has been found. In this section we will give precise asymptotic
estimates for a, , but also for the number of secondary structures of order p with
n paired and m unpaired bases denoted by a,; p.

In order to determine an asymptotic for a,, we start with the representation of
R,(z,a) as given in (1) and set a := z , i.e. we do not distinguish between paired
and unpaired bases, each base is marked by z. We find

VZ .. (P +22-1
R,(z,2) = Up || ).

z—1 225/2

For the computation of an asymptotic for the coefficient at 2™ we are interested
in the dominant singularity of the generating function. This singularity results



from the zeros of the Chebyshev polynomial for which it is known that

mm
Un<cos< >>:0,1§m§n.
n+1

Thus we have to find the smallest solution of

224221

9.5/2 cos(m27Pr), 1 <m < 2P — 1.
z

This is not a trivial task, since it is equivalent to determine the roots of a poly-
nomial of sixth degree which can be solved in terms of hypergeometric functions
in one variable using Klein’s approach [12] to solving the quintic equation. We
will first continue our computations by assuming that there is only one dominant
singularity which is given by z(p) without knowing its exact value and the related
choice for m. Then the next step is to find an expansion of R,(z, z) around z(p).
This can be done by using the representation [1, 22.3.16]

__sin((n + 1) arccos(z))

Un(x) = -
(z) sin(arccos(x))
We find
o ) e
2=2(p) (% — cos (m2_p7r)) z(p)* — 62(p) +5

and

lim (x eos (m2”’7r)) sin(arccos(x)) _ 2 sin?(m27Pr)

s—cos(m2-Pr) sin(2P arccos(x)) cos(mm)
In that way we get the expansion
R (2 2) 1 —4z(p)? 277 sin® (m27Prr)
2,2) = :
’ (1- %) @ ==2@)(=(p)* = 62(p) +5)  cos(mm)

By means of the O-transfer method [6] this expansion can be translated into an
asymptotic for the coefficient. We find

Lemma 1 Assuming that z(p) is the only dominant singularity of the gener-
ating function R,(z,z), then there exists m € [1 : 2P — 1] such that the num-
ber an, of secondary structures of size n and order p is asymptotically given by
c(m,p)z(p)™", n — oo, where

—4z(p)3 27P sin®(m27Pr)
1—2(p))(2(p)* — 62(p) +5)  cos(mm)

c(m, p) = (



It remains to find a representation of z(p), the correct choice for m and to prove

that there is only one singularity on the circle of convergence. For that purpose we
. . 3

discuss the equation f(z) = cos(m2 Px) for f(z) := =51 and 1 <m < 29 — 1.

We find that f(z) = —1 for z = 2 — 1/5 and that the smallest solution of
f(z) = 1is given by z = 1. Furthermore, since f'(z) > 0 for z € [3 — 1/5,1],

we know that f is a monotone increasing function within this interval. Thus,
the smallest solutions of f(z) = cos(m27Pr) result from the choice m = 27 — 1
since this minimizes the value of the cosine. So z(p) is the smallest real solution
of f(z) = cos((2P — 1)27Pmr) = — cos(27P). Implied by properties of the cosine
we find that the sequence f(z(p)) is monotone decreasing with respect to p.
Furthermore, we can argue that z(p) is a monotone decreasing sequence itself
by means of the positivity of the first derivative f’ for all values in the interval

2/3_ . . .
[2(00), 2(1)] = [2 — 2V/5, (16053&%)1/34 . Since the value of f"(z) is negative
for all z in that interval, we can conclude that % > f'(2(p)) for all

possible p. Now setting f(z(p)) = — cos(2 Px) and expanding the cosine finally
proves
0 < z2(p) — z(0c0) < 47P.

It remains to show that there are no additional singularities on the circle of
convergence. For p = 1 the equation f(z) = — cos(27?7) can be solved explicitly.
We get the solution z(1) as given above and two complex roots of larger modulus.
For p > 1 we consider the equation z* + 2z — 1 + 2 cos(27P7)2%2 = 0. We define
g(2) = 2c0s(27P7)2%? — 32 — 1 and h(z) := 2° + 5z and regard the contour
|z| = 5. Forallp € N, p > 1, we find that |h(3e")] > |g(5€¢)|, ¢ € [0,27], such
that the theorem of Rouché tells us that g(z) + h(z) and h(z) possess the same
number of zeros within the domain |z| < 1. Therefore, we have:

Theorem 3 The number ay, of secondary structures of size n and order p is
asymptotically given by c(2P — 1,p)z(p)™ ", n — oo, where z(p) is the smallest

real solution of the equation 232+z§7;1 = —cos(27Pm). For all possible p, 0 <
z(p) — (% -3 5) < 47P holds.

In Figure 2 some approximate values for ﬁ and ¢(2P —1, p) can be found. Figure
3 shows the quotient of the number of secondary structures of order p and the total
number of structures for different sizes n. In Figure 4 you can find the quotient
of some exact values of a,, and their approximation as given in Theorem 3. As
you can see, the rate of convergence of the asymptotic gets worse the larger p
becomes.

Now we will consider the bivariate case, i.e. we will determine an asymptotic
for the number a,, ,, of secondary structure of order p with m unpaired and n
paired bases. For that purpose we return to (1) and determine the dominant
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ERES | (2" —1,p) |
1 ] 2.20557 0.143725
2 | 2.51326 0.0195502
3 [2.59173 0.00249731
4 | 2.61145 0.000313867
5 | 261639 0.0000392868
6 | 2.61762 0.00000491253
7 | 261793 0.000000614118
8 | 2.61801 0.0000000767664
oo || 25 ~ 261803 | — O(27%) =0

Figure 2: Some numerical values for — Figure 3: The quota of the sec-
#(p) ondary structures of order p to all
and ¢(2” — 1,p).

structures.
p

n 1 2] 3 4 5

10 99870... | .15770... 0 0 0

o0 299999... ] .99463 ... | .28415... <105 0

100 ] .99999...1].99999...| .82109... | .00855... <1070
250 | .99999... | .99999... | .99820... | .45636... | .00006...
1000 ] .99999... ] .99999...| 1.00000... | .99797... | .45247 ...
1500 ] .99999... ] .99999...| 1.00000... | .99995... | .76964 ...

Figure 4: The quotient of some exact values of a,, and their approximation as
given in Theorem 3. An entry of zero indicates that there exists no secondary
structure of the given size and order.

singularities now being the solutions of

—(a—1)+(1+a)z?

222\/a

We find two solutions located on the circle of convergence, namely

=cos(m2 Pr), 1 <m < 2P — 1.

1-a 7 = —z2(a,p).
Aa.p) = \/1 +a+ 2\/6(:05(2*1’%)’ Ap) = —2(eD)

Again we have to find an expansion of R,(z,a) at z(a,p), the second singularity
will only be responsible for a factor (1 4 (—1)") within the asymptotic. We thus
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will not consider it in detail. Using the same ideas as in the univariate case we
find
1 a27P sin’(27Prr)

(1 __= ) (1—a)(1+a+2y/acos(27Pr))

z(a,p)

Rp(za a) =

(4)

Now, we shall apply the following theorem due to Bender [2] in order to derive
an asymptotic for the coefficient at z"a™:

Theorem 4 Let f(z,w) := 3, k>0 U k2" WP, >0, and let —00 < a < b < oc.
Define R(e) :={z ]| a < R(z) <bA[I(2)| < €}. Suppose there exist € >0, § > 0,
an integer m > 0, and functions A(s) and r(s) such that

(i) A(s) is continuous and A(s) # 0 for s € R(e);
(i1) r(s) # 0 and has bounded third derivative for s € R(e);

(iii) for s € R(e) and |z| < |r(s)|(1+4), the function

15 analytic and bounded;
. () 2 " (a
(i) (%) # (Fey) fora<a<i;

(v) f(z,€e*) is analytic and bounded for |z| < |r(R(s))|(1+9) and e < |F(s)| <
m

Then, we have
nme=* A(a)

Ap e ~
* mlr(a)o,V2mn
! 2 "
uniformly for a < a < b, where % = _Z((S)) and 02 = (%) _ TT(EIOS)_

The expansion (4) proves that the assumptions of the theorem are fulfilled. In
€327 Psin?(27P7)
(1+es+2ves cos(27Pm))(1—es)
is the correct choice. We conclude that

detail, we find that in our case m := 0 and A(s) :=

together with r(s) := \/1+es+217:s —

r'(s) _ eB+e)+ cos(27P)v/es (1 + 3e®)
r(s) 2(e® — 1)(1 + e* + 2y/e® cos(27Pmr))

and
» _6+6 cosh(a) + 4 cos(2'P7) + (15 cosh(a/2) + cosh(3a;/2)) cos(27P)
* 32 csch %(a/2)(cosh(a/2) + cos(27r))2

g

hold. Thus the application of the theorem together with the contribution of the
second singularity yield:
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P 1 2 3 1 5 6

L] -2.733709 | -3.361703 | -3.527500 | -3.569480 | -3.580007 | -3.582640
é -2.072009 -2.399273 -2.479055 -2.498913 -2.503873 -2.505112
% -1.609437 -1.782359 -1.820340 -1.829540 -1.831822 -1.832391
% -1.270196 -1.362089 -1.380500 -1.384861 -1.385937 -1.386205
1 || -0.7821377 | -0.8055456 | -0.8096698 | -0.8106201 | -0.8108530 | -0.8109109
2 [ -0.4409915 | -0.4453515 | -0.4460703 | -0.4462338 | -0.4462738 | -0.4462837
3 [ -0.3065120 | -0.3079899 | -0.3082293 | -0.3082837 | -0.3082969 | -0.3083002
4 [ -0.2347602 | -0.2354266 | -0.2355338 | -0.2355581 | -0.2355641 | -0.2355655
5 || -0.1901913 | -0.1905463 | -0.1906032 | -0.1906161 | -0.1906193 | -0.1906200

Figure 5: The appropriate values of « for the asymptotic of a n, With p:= 2.

Theorem 5 The number apy,, of secondary structures of order p with m un-
paired and n paired bases is asymptotically given by

4(6a _ 1)7(n+1)

2P\ /mn csch(a/2)

y (14 e + 2y/ev cos(27Pm))"/2~Le@= 2™ 5in?(27P7) (cosh(a/2) + cos(27P7))
\/6 + 6 cosh(a) + 4 cos(27P*1) 4 (15 cosh(a/2) + cosh(3a/2)) cos(27P7) ’

(1+(=1")

uniformly for oo €] — 00,0, where ™ = —za(f;tela)z;rf;i(i;p?a‘/cigiﬁ;)

Please note that the choice o €] — 00, 0[ does not imply any restriction on the
application of the asymptotic; all reasonable ratios of m and n lead to a solution
of :'((2‘)) within this interval. In Figure 5 you find the appropriate values of « for
different choices of p and p := ™.

Figure 6 shows the quotient of some exact values of a,, ,,, and their asymptotical
equivalents as given in Theorem 5. For the computation of the approximations
we used the values of a as given in Figure 5. We will now turn to another open
problem within this context, namely the computation of the average order of a

secondary structure and the determination of the related higher moments.

4 The Expected Order of a Secondary Structure
and the Related Higher Moments

In this section we will prove exact asymptotic equivalents for the expected order
of a secondary structure of size n, for the related variance and the r-th moments
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p| n 1 | 2 | 3 | 4
50 || .98793 | .97009 | 21429 | 0
15 1 100 ]| .99391 | .98800 | .77609 | .00352
300 [ .99791 | .99600 | .99452 [ .55478
60 [ .99899 | 1.0004 | .79363 | .00535
5 [ 90 99933 [ 1.0002 | .95110 | .07571
120 [| .99948 | 1.0002 | .98875 | .22974
10 || 99833 [.73537 [ 0 0
1 [ 20 ][.99909 | .97763 | .09833 ] 0
60 [ .99966 | .99963 | .87649 [ .01770
10 || 99317 [ .75580 | 0 0
3120 [].99655 [ .97949 [ .11230 | 0O
40 |[.99830 | .99808 | .65284 [ .00041

Figure 6: The quotient of some exact values of a,,, and their approximation as
given in Theorem 5. An entry of 0 indicates that a,,, , is zero.

about the origin. Furthermore, we will provide asymptotics for the r-th moments
about the origin for the order of a secondary structure with n bases of which m
are not paired.

4.1 Expected Order

In order to determine the expected order of a secondary structure of size n we
have to consider the sum

= ZpRp(Za Z)

p>1

It proves convenient to use the representation of R, given in (2) in order to
evaluate this sum. By obvious series expansion we find

M(z) = \/_1_“’2 W™ _ \/_1_‘*’2 271 (1425)
]'_Z\/_p>1 Z\/_p>l

J>0

::c;'(w)
The sum o(w) can be evaluated by means of the Mellin summation formula [5].
For that purpose we compute the Mellin transform of o (e *) which proves to be
given by
$) 2 p(2PH 1 +25)) 7" = o——C(s)T(s) =: M(s)

2"
Jj20

14



for I'(s) the complete gamma function and ((s) Riemann’s zeta function. Ac-
cording to the method, we get an expansion of (e *) at ¢ = 0 by summing the
residues of ¢t *M(s) located left to the fundamental strip of M(s). The corre-
sponding singularities are the poles at s = 1, s = 0 (double pole), s = —k for
k € Nand s =y, := 125(12’3 for k € Z\{0}. We find for the corresponding residues:

s=1 : 271,
c—0 2In(t) + 2y — 2In(7) — 31In(2)
B 41n(2) ’
1
=—-1: ——t
° 127
3 L5 and
s=-3 : ——t’an
5040
o) (xw)
= AL AN AL Xk
ST Xk In(2)

In general, the residue for s = —2n, n € N, is 0 and that for s = —2n—1, n € Ny,
is in O(t2”+1). Besides the sum of these residues we need an expansion of the

s
ﬁ

factor ¢ := = around the dominant singularity of M (z). This singularity is

—Zz

- 1\/_ 5 which can be concluded from the obvious bounds

ISH ,_.
[\Jo0)

located at z
[2"]T(z,2) < [2"]M(2) < [z"]logy(n)T(z, 2)

and the fact that z = 2—1/5 is the dominant singularity of T'(z, z). Furthermore,
24 is the only smgularlty on the circle of convergence of M(z). The expansion of

© at zgq is given by
\/9 5—20 3/2
Vo 1 Z+O<(1—i> )
<d

5\/5— 11 24

Since t = —In (HE) and ¢ = 0 for z = 24 we expand —ln( +E) around € = 0 to
find t = 2e + O(¢®) and thus

\/9\/5—20 -
5\/5—11 _Z_d (5)

Thus we can conclude that ¢ = ¢t + O(t?) holds. If we now multiply the sum of
residues by this representation of ¢ we get

21In(t) 4+ 2y — 2In(x) — 31n(2) COx)T (xk)
2+ ( 1In(2) )”,;] In(2)

X+ O().

15



This expansion can be translated into an expansion around the dominant singu-
larity z4 by substituting ¢ corresponding to (5). In that way we find:

_ Z _1
M(z) = R o (1—d> L pn@) +2In(p) +2y = 2In(x)) [ =
In(2) In(2) 24
i B A _Z
+1H(2) kz;éor(Xk)C(Xk)e i (1 Zd> + O (1 Zd> ’

Now we can use the O-transfer method in order to get the asymptotic for the
coefficient [2"]M(z). The application of the appropriate formulae yields

[2"]M (z) ~ ngn <% In(n) + pias 211;(2) — 2)
_ pzg"(In(2) +21n(p) + 2y — 21In(m))

21n(2)v7n?

dpz," —2mik logy(p)

> Tk (xn)e 8200,
In(2) { =0
In order to determine the expected value we have to devide this asymptotic by
the asymptotical number of secondary structures of size n. This number can be
concluded from the following expansion of T'(z,z) at z = z; (terms relevant for
the asymptotic only):

+

Xk2_3/F <Xk:2_ 1) +(’)(zd*"n75/2)-

T(z,z2) =
V30 + 145 2\Y2 (/170150 + 76470,/5 2\ %2 Z\?
- - 2) - (1-2) +o((1-2))
2 2d 80 Zd Zd
We find
[2"]T (2, 2) ~
7" 30 + 14/5 (1 34/170150 + 76470/5
24 + 145 <_ n 3 ) _ \/ + V5 Lo (n,7/22d,n) ‘
™n3 2 2 16n 320n

The resulting quotient can by simplified so that we finally find:

Theorem 6 The expected order of a secondary structure of size n is asymptoti-
cally given by

1 272 v+ 2 n .
5 108 (7”) “ome) T2 (lOgQ (F)) +OT),

n — o0o. Here, A(z) is a periodic function of very small modulus (|A(x)| <
0.040597 . ..); is has the following Fourier series:

1
A =1m)

Xk Tk L 2mik
kEﬂ(Xk -1 (;) Clxr)e™ ™, xp = @)

16
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Figure 7: A plot of the exact ex- Figure 8: A plot of A (10g2 (%))
pected order (dotted line) and its ’

asymptotic equivalent (solid line).

Please note that we only had to use the leading term of the asymptotic for
[2"|T(z, z) in order to compute this expectation. However, we will need all terms
in order to derive further results which will be presented in subsequent sections.
In Figure 7 you find a plot of the exact expected value together with its asymp-
totical equivalent as given in the previous theorem. Figure 8 shows the oscillation
implied by the function A within the asymptotic behaviour.

We will continue our investigations by computing asymptotics for the variance
and the higher moments.

4.2 Variance and Higher Moments

In this section we will provide an asymptotic equivalent for the variance of the ex-
pected order of a secondary structure. We will also prove asymptotic equivalents
for the corresponding r-th moments. The latter will be done for both, secondary
structures built from n bases and secondary structures built from n bases from
which m are unpaired.

For the determination of the r-th moment we have to consider

1—w -1 ;
M (z,a) = p'Ry(z,a) = va — =N w042
I; P l—a Jw 1;

j>0

~ J
'

::U(T)(w)

17



Again, we use the Mellin summation technique to find an expansion of o (w)
around the dominant singularity. The Mellin transform of ¢ (e~*) is given by
I(5)2°A,(27°)C(s)

(1—2-9)r '

M (s) =

Here, A, (z) denotes the n-th Eulerian polynomial for which [3, p. 245]

>0 (1 _ u)n+1

holds. It is the pole at s = 0 of order » + 1 which is responsible for the most
significant contribution to the asymptotic of the coefficient. Therefore we are
interested in the residue of t~*M()(s) at s = 0. Since for s — 0

Ap(1) =7l see [13,5.1.3(4)],

c0) =3,
T(s)=s"'—v+0(s),
1 1

_ -r —r+1
A=y IHT(Q)S +O(s™"), and

5 =>"In'(t) (1) 5",

1l
>0 7!

we can conclude that the residue of t*M)(s) at s = 0 is given by

(_1)r+1 lnr (t)

m + O(lnril(t)). (6)

Now we have to consider the factor %1_75 First we set a := z, i.e. we do not
distinguish between paired and unpaired bases. In this case, the only dominant
singularity is again given by z; and we thus have to multiply (6) by ¢ in order to
take care of the factor. After resubstituting ¢ within the resulting expansion of
M™ (e~ e7*) around t = 0 we find the following leading term for the expansion

of our generating function at its dominant singularity z,:

1 = 1/2
_2—r+11 r| - <1 o _) )
082 (1 — i) P o

2d

The application of the O-transfer method yields:

. 2y " logs(n) _ _ _
z”M(’")z,zNQTZdiZ—i—On?’/anrlnz".
MOz, 2) ~ 270 == 4+ O ( (m)z")

Thus, by dividing this asymptotic by the asymptotical number of secondary struc-
tures of size n we have proven the following theorem:

18



Theorem 7 The r-th moment of the order of a random secondary structure of
size n 18 asymptotically given by

2 " logh(n) + O(In" " *(n)), n — co.

Please note, that this asymptotic is not as precise as it ought to be in order to
compute the variance since the leading term cancels out when we compute the
2nd moment minus the square of the first moment. Thus, in order to find a
representation for the variance, we have to compute further terms for the second
moment. We therefore return to M) (z,2) and determine the exact residue
at s = 0 as well as the residues at s = yi, k € Z\{0} (we do not consider
s = 1, since the resulting residue is of order ¢ ! and thus becomes constant after
it has been multiplied with the expansion of the factor %% =t + O()).
For vy(n) := limy, o (X7, In(k)"/k — In(m)"*/(n + 1)), the residue at s = 0 is
given by

—372 + 4 (67(1) — 7In(2)” + 3yIn(8) + 6 1In(r) — 31n() In(87))

24In(2)*
=h
2y — 31In(2) — 21n(m) 9 1
—In(t —In*(t) —5—.
n(t) 2 1n2(2) O TIY
- g p -
=:fo =:f3
For ¥ := L 1n (T'(z)), the residue at s = xj, possesses the representation
oS0 () In(?)
txr In?(2)
+F(ch)((ln(2) + 20 ()¢ Oxr) + 2¢"(Oxk))
txx In?(2) '

After multiplying with ¢ and resubstituting we find that the residue at s = 0
implies the following contribution to the expansion of M®)(z,2) at z = z4:

1(1- ) otn-mi e ap ) (1= 2) a1 - £ ) s aintap s

Zd

1/2
_<1_i> 1n2 <1_i> ofs.
Zd Zd

This translates into the following contribution to the asymptotic for the coefficient
("] M®) (2, 2)

—n —n
2d

2\/7r—n3pf3 In*(n) — \/7r_n3pln(n)(f2 — f3(y—2+1In(4)) + 2f31n(4p))

19



—n
2

vmn3 P

(2(f1 n(dp) fo — 12(4p)fs) + (o + 21n(dp)fs) (3 + 21n(2) — 2)

—fg(%”yQ + 2y1In(2) + 21n*(2) — iﬂQ — 2y — 4ln(2))>,

and into the contribution

L fan(n) = () (fz — fo( — 2+ In(4)) + 2 In(ip)
- (2(f1 ~ In(4p)fo — In2(4)fy) + (fo + 2 1n(49) f3) (y + 2 1n(2) — 2)

—fg(%’)/Q +2y1In(2) + 21n*(2) — %71’2 — 2y — 4ln(2))>,

1 1 om?\ 1 v+ 2
=3 log%(n) + 3 log, (n) log, <?> —5 log,(n) n(2) +0O(1)

for the second moment by division through the asymptotical number of secondary
structures of size n. For the singularities at x; we only consider the most sig-
nificant part of the residue, i.e. the part which possesses the factor In(t). Its
contribution to the second moment is determined in the same way and proves to

be given by . ( )
In(n Xk ik log, p%
In?(2) g;;("’“ - T (7) e '

Thus, not only the terms of order In?(n) cancel out when computing the variance,
also the terms of order In(n) possess the same coefficient (constant and oscillating
part) within the second moment and the square of the first moment. Thus we
conclude, that the variance is of order O(1). The computations for that constant
term were only performed numerically without regarding the oscillations. In this
way we have found:

Theorem 8 The order of a random secondary structure of size n possesses a
variance which is asymptotically given by

0.17939...+ A(n), n — oo,

for A(n) an oscillating function.

We have to expect that A(n) is only of small modulus. This presumption is
confirmed by the comparison of the exact variance with our asymptotical estimate
which can be found in Figure 9. In Figure 10 you find a plot of the upper bound
of the probability that the order of a random secondary structure differs at least
by k from its mean implied by Chebyshevs inequality. We used the exact values
of the variance in order to prepare the plot.
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Figure 9: The comparison of the ex- Figure 10: The upper bound for the
act variance with the asymptotic es- probability of an order that differs
timate (dashed line). at least by k from the mean.

Now, let us try to get an asymptotic for the r-th moment in the bivariate setting,
i.e. for the secondary structures with n bases from which m are unpaired®. For
this we have to set a := az since in the initial setting our generating functions
only mark the paired bases by z. It is obvious, that even after setting a := az
the substitution w := e~* implies exactly the same Mellin transform M) (s) as
in the univariate case. However, we can use M) (s) only in a restricted way
since the substitution w := e~ introduces a coupling of the actually independent
variables a and z. This coupling is responsible for the fact that an asymptotic
for the coefficient at a2" which results from this Mellin transform is only valid
if m and n grow within a fixed proportion.

Let us start with the determination of the number of secondary structures with n
bases from which m are unpaired. The appropriate generating function is 7'(z, az)
which possesses the dominant algebraic singularity z4(a) := 14 3a — £\/a(4 + a)
and the following leading terms

a(l+a) +(a—1)\Ja(d+a) at+ oyl - =
da —2 \/—2a(2+a)(4+a)+2\/M(2+“(4+“))

for its expansion at z4(a). To determine an asymptotic for its coefficients, we can
use the Darboux-method for multivariate generating functions due to Drmota
which is recalled in the following lemma:

!Initially, our generating functions suggest to consider the secondary structures with n paired
(variable z) and m unpaired (variable a) bases. However, it proved to be technically convenient
to change to this setting where one variable considers all bases (paired and unpaired).
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Lemma 2 ([4]) Let c(x,z) be the generating function for ¢,y and suppose that
c(x, z) has a positive radius of convergence r(z) for z = (21,...,2m) € [a,b] =
[a1,b1] X -+ - X [@m, bm], (0 < a; < b;), 1 <i < m. Furthermore, suppose that there
is only one singularity x = f(2) on the circle of convergence |x| = r(z), and that
c(x, z) has an expansion of the following form:

c(x,2) = u(z,2) + g(2) A (%) o (A (%))

for v — f(2), z € R(a,b,¢) = {z = (21,...,2m) : |2] € [a,b],|arg(z)| < ¢} and
),6,0) ={x:|f(z) — x| <e¢ larg(x — f(2))]| < ¢} for some e, ¢ > 0,
= u'L(u), r # —1,-2,..., L(u) is of slow variation, and u(zx,z),

p(z) = =Vlog(f(€”))les=-,

suppose that the matriz

0* s
E(Z) = <_88i83]‘ log(f(e )) eS:z> i,j=1,...,m

is reqular for z € R(a,b,®), and that there exists a 6 > 0 such that c(x,z) is
analytic and bounded for |z| € [a,b], z € R(a,b,9), |x| < r(2)(1 + §). Then
det(X(z)) > 0 and we have

g(h(p)) A(n) 1
V @mrn)mdet(S(h(p))) T(r)n f(h(p))"h(p)*

Cn,k ™~

uniformly for p:=k/n € [u(a), u(b)], where h(t) is the inverse function of u(z).

We need to be careful since the coefficients [2™"a™]T'(z, az) are different from zero
if and only if n > m, n — m even. Therefore, the result which will be given by
the application of Lemma 2 has to be multiplied by (14 (—1)"~™) in order to get
the correct asymptotic. Performing the appropriate computations we find that
for g :=

(TL + ,ng)n-l-%(,rﬂ _ n292)ng—%

B ey o Y

uniformly for ¢ €]0, 1], n — oc.

Now let us consider M) (z,az). As already mentioned, the resulting Mellin
transform remains the same, we only have to resubstitute ¢ in another way. Thus,
we also can use the approximation for the residue at t = 0 as given in (6) to get
the most significant term of the expansion around the dominant singularity. This
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singularity is also given by z4(a) which can be seen by the same arguments as in
the univariate setting. By means of series expansions we find that

t=—In(w) = \/24+6a+§ a(4+ a)(2 + 5a) (1 - Zd?a)>1/2+0 (1 - zja)) .

The factor 1@% expands to

\/5\/@(2+a— a(4+a))
t.
2+a(—2—a+/a(4+a))

If we now recombine the different parts of the generating function and resubstitute
t, then we find for the most significant part of the expansion at z4(a):

1

—2_1/2_’"\/a(2 +a)(d+a)+a(d+a)(2+a(d+a)) W\/l -~z

zq(a)

Again, we can use this expansion together with Lemma 2 to get an asymptotic
for the coefficient. This asymptotic also has to by multiplied by (1 + (=1)""™)
for the same reasons as before. We find for ¢ := 7 €]0, 1] fix:

logs(n)(n + no)"(n* —n?0*)"?
2r4rer(n — no)"t2(no)?me

[z”a"Q]M(r)(z, az) ~ (14 (=1)"7")

for n — oo. By dividing this asymptotic by the asymptotical number of secondary

structures of the appropriate size we get an asymptotic for the r-th moment. We
find:

Theorem 9 The r-th moment of the order of a random secondary structure with
n bases of which m are unpaired is asymptotically given by

27" logh(n) + O(In""'(n)), 0 := i €]0,1[ fiz, n — .
n

As a consequence, the leading term of the r-th moment is identical with the one in
the univariate case and therefore independent of the ratio p. However, empirical
observations imply the conjecture that the second order term depends on p.

5 The Distribution of the Unpaired Bases

In this section we will investigate the number of unpaired bases in arbitrary sec-
ondary structures and in secondary structures of order p. We start with the simple
task to determine the average number of unpaired bases and the corresponding
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variance for secondary structures of size n. For that purpose we determine the
first partial derivative of T'(z,az) with respect to a and set a := 1 afterwards.
We find

21| -

(2= 12(1+2(z — 1)) + (2(2 = 32) — 1)y/(1+ 2( = 3)) (L + = + 22)‘
2(z — 1)22\/(1 +2z(z —3))(1+ z + 22)

Again, the dominant singularity stems from a zero of the square roots and is

given by z; = % - %\/5 The expansion of [B%T(z, az)]a:1 at 24 possesses the

following leading terms:

1 ~3 — 171 3
50+70\/5<1_i> _7\/5 17+3\/ 7 0+766\/5<1_£> +o(1—i>.

20 Zd 6\/5 — 14 160 Zd Zd

The O-transfer method now implies the asymptotic for the coefficient at [2"] as
given below:

2] [aﬁT(z, az)] -

a
8 ((i - L) V150 4 70v/5 — i\/1710 + 766\/5> +0 (z*”n*f’/?)
Jvan \\20 160n 320n d '

By dividing this asymptotic by the asymptotical number of secondary structures
of size n as given in Section 4 we find the following theorem:

Theorem 10 The average number of unpaired bases in a secondary structure of
size n s asymptotically given by

n n 3 n 1
V5 10 /5
Thus about 44% of the bases are unpaired on the average. A similar result
concerning the expected number of unpaired bases can be found in [10]. Using
the same methods we can also determine an asymptotic for the second factorial
moment for the number of unpaired bases in a random secondary structure by
82

considering the second partial derivative [WT(z,az)] i We find, that the

second factorial moment is asymptotically given by

+0(n™"), n — co.

1o, 2
—-n -n
5 5

which implies for the variance o?:
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Figure 11: A plot of the distribution of the secondary structures of size n with
m unpaired bases.

Theorem 11 The variance o? of the number of unpaired bases in a random
secondary structure of size n is asymptotically given by

2n+1 1
57 + m, n — .
The results we have deduced so far enable us to get additional knowledge. In
Section 4 we have computed asymptotics for the number of secondary structures
with n bases from which m are unpaired and the number of secondary structures
of size n. By dividing these asymptotics one by the other we find:

Theorem 12 Asymptotically and uniformly for ™ €]0,1[, n — oo,

1

(1 4 (_1)nfm)5 2672m7n(3 o \/g)nn5/2(n 4 m)n+%(n2 _ m2)m7§
m2m(n — m)"*+% /7 (10y/30 + 14v/5(8n + 3) — 3y/170150 + 76470+/5)

percent of all secondary structures of size n have m unpaired bases.

x 100

If we take a look at Figure 11 which shows a plot? of this quantity we get the
conjecture that the parameter possesses a normal distribution.
In order to prove this conjecture we use the following theorem:

Theorem 13 ([8]) Let F(z,u) be a bivariate function that is analytic in a do-
mawmn
Do = {(z,u) | |2 < p,|ul <1},
2Please note that we have replaced the factor (1 + (—1)""™) of the asymptotic by 2 and
omitted the factor 100 in order to generate this plot.
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and has nonnegative coefficients at (0,0). Assume that there exists € >0, 9 < T,
and r > p such that in the domain

D ={(z,u) | |z| <r, Arg(z — p) € [V,21 — V], |u— 1| < €},
the function F(z,u) admits the representation
Pzu) = A(zu) + B(z, u)O(z, u)(log C (e, ),

where A(z,u), B(z,u), C(z,u) are analytic for (z,u) € D, k is a nonnegative
integer, and o ¢ {0,—1,—2,...}. Assume also that the equation

(1) =

has only one (simple) root ¢ = p in |z| < r and that B(p,1) # 0. Assume finally

the “variability condition”,
2

0 < liminf &.
n

Then, the variable with probability generating function

[2"]F (2, u)

(W) = R G

converges in distribution to a Gaussian variable with a speed of convergence that
is O(n=1/?).

As postulated in this theorem we expand T'(z, az) around its dominant singularity

z(a) :==1+ 1a — 3y/a(a + 4) which yields

a(l+a)+ (a—1)/ala+4)
4a — 2
=:A(z,a)

ala+4 1/2
2 ) (1—i> .
\/—Qa(2+a J(4+a)+2y/a(4+a)(2+ala+4))

~

—B(za

Thus we have to set C(z,0) == 1— &5, k =0and o = = —3. The equation

c¢1)=1- é_l\/— =0 possesses exactly one solution, namely ¢ = 2—1v/5 =: p.
2 2

Furthermore, B(p,1) = —\/ﬁ # 0. The variance o2 has already been

computed in Theorem 11 and proves that the variability condition is fulfilled.
Thus we can infer:
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Figure 12: The convergence of the distribution given in Theorem 12 (dashed lines)
to the Gaussian distribution with the appropriate mean and variance (solid lines).
The plots correspond to the cases n = 10k, for k£ = 1, 2,..., 6, in left-to-right
order.

Theorem 14 For random secondary structures of size n the quota of structures
with m unpaired bases to all structures converges in distribution to a Gaussian
variable with a speed of convergence that is (’)(n_l/Z), n — oQ.

Figure 12 compares the asymptotic of Theorem 12 to the Gaussian distribu-
tion with the variance and the mean as computed before. Please note that the
Gaussian distribution function has to be multiplied by two in order to get this
convergence. Again, this results from the fact that [2"a™|T(z,az) # 0 if and only
if n > m, n —m even, and the resulting factor (1 + (—1)"™) which we have
substituted by 2 in order to generate the plots.

We conclude this section by considering the question whether or not the order of a
secondary structure has an influence on the number of unpaired bases. Therefore
we determine the expected number of unpaired bases in a secondary structure of
order p. For that purpose we determine the first partial derivative of Ry(z, az)
with respect to a and set a := 1 afterwards. Based on the representation (1) we
find for that derivative:

22 (2(z = 3) = V)T (THZE2) + (2 — 1)¥2(1+ 2(2 — 1)Uy (T2

. _ 3
425 sin? (21’ arccos (%ﬁjz))
2z
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Here, T,,(u) denotes the n-th Chebyshev polynomial of the first kind. By applying
the identities [1, 22.3.15] and [1, 22.3.16] we can switch to the representation
2P(2(2 — 3) — 1) cos (2” arccos (’1””23))

2,5/2

. _ 3
422 sin? (21’ arccos ( et ))
Z

::R;l)(z)

(z—=1)(1+2(2—1))

. _ 3 . _ 3 °
477/2 sin (21’ arccos (M)) sin (arccos (M))

225/2 225/2

~

_a®
=:R;"(2)
Both, R(V(z) and R{?(z), have their singularity of smallest modulus at 2 = z(p)

for z(p) being the smallest real solution of the equation *1;;252/123 = cos (21;;171') =

—cos(27?7), p € N. However, only RI(,I)(Z) contributes to the leading term of the
asymptotic since z(p) is a pole of second order in RI(,I)(Z) while it is a pole of first

order in Rz(f)(z). We thus have to expand Rz(,l)(z) at z(p) which can be done by
the following steps. We first consider

(z + cos (27P7))”
sin?(2? arccos(z))

for + — —cos (27P7). Applying I’Hospital’s rule we find that this limit is given
by
sin?(2777)
(27)?

(1- %)

(*1;;25%“23 + cos (2—1”7r))

Next we have to consider

5, 2 = 2(p).

This limit can be inferred from (3) and proves to be given by
z(p)°

(2(p)? — 62(p) +5)?

It remains to expand the residual parts of R{)(z) which yields

—2°(2(p)(2(p) —3) — 1)
4z(p '

16

)
)2
Thus, we find the following leading term of the expansion of AI(,I)(,Z) around z(p)

1 162(p)° sin?(2 1) —27(z2(p)(2(p) — 3) — 1)
(ISR e 7 e = T
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The O-transfer method now implies that the asymptotic for the coefficient
[2"] [%Rp(z,za)] . is given by:

n< ! ) 162(p)°  sin?(27m) —2(=(p) (2(p) — 3) — 1)
z(p)) (2(p)® —62(p) +5)% (27)? 4z(p)? '

Dividing this quantity by the asymptotic given in Theorem 3 provides the next
theorem.

Theorem 15 The expected number of unpaired bases in a random secondary
structure of size n and order p is asymptotically given by

4—-14
n<1+ 5 2(p) ),n—)oo,
2(p)? + z(p) =5
where z(p) is the smallest real solution of the equation z32—|;§72—1 = —cos(27Pm) for
which 0 < z(p) — (% -3 5) < 47P holds.

Since z(p) converges exponentially fast to the reciprocal value of one plus the
golden ratio, the factor of n in the previous theorem converges very rapidly. Its

1 | 2 | 3
1 0.4963... ] 0.4580... | 0.4498 ..

4 | 5 | 6
0.4478...[0.4473...]0.4472. .|

p
l

Figure 13: The percentage of unpaired bases to all bases in a large (n — o)
secondary structure of order p.

limit is numerically given by 0.4472135..., i.e. like in the general case, where
secondary structures of arbitrary order are considered, about 44% of the bases
are unpaired. Thus, only in the case of a small order it has an influence on the
number of unpaired bases. The percentage of unpaired bases for smaller values
of p can be found in Figure 13.

6 Additional Results

In this section we will consider hairpins and bulges as defined within the intro-
duction. We will determine the expected number of hairpins and bulges in a
secondary structure of size n and in a secondary structure of size n and order p.
Furthermore, we will derive the expected length of a hairpin-loop and of a bulge
in these structures. Our investigations are of interest since it is known that the
contribution of different substructures to the total free energy depends on the
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loop type and the number of unpaired bases in the loop of the substructure (see
e.g. [28]). It is also in the intention of this section to give the reader an idea of
how general our approach can be applied.

Let us start with the enumeration of the hairpins. Since each hairpin possesses
exactly one hairpin-loop we will identify an entire hairpin by its loop for the pur-
pose of enumeration. In order to derive the related generating functions we return
to section 2 and the derivation of the substitutions presented there. If we consider
the representation of a secondary structure as a word over the alphabet {(,|,)}
and the corresponding cases for the application of 5 we find that a hairpin-loop
is generated exactly at those positions where | is inserted in between () within
a Dyck-word. Thus we can mark a hairpin-loop by variable h by translating |*
into h% instead of ;#- for the generating functions. In this way we get the
following substitutions:

1 ha 1 1
= 2h— L= =P =27 :
v T T e T e ) T T 12

These substitutions can be applied to T and R, in order to get the generating
function in question. In the case of T we find for a := 2

1— 22— h2® — /(1 — h2?)(1 — 2(4 + 2(zh — 4)))
2(1 — z)22 ’

with the first partial derivative with respect to h evaluated at h = 1

21— 22 +2(2=2) = /(1 =91 +2(: - 3)(1 - 2)
2(1 = 2)y/(1 = 2)(1+2(z = 3))(1 — 2?)

The dominant singularity of this function is located at z = 2z := % — %\/5 with
the related expansion (terms relevant for the asymptotic only)

1 —1/2 1 1/2 3/2
— /305 — 50(1 - i) 55 V/950 4 486V/5 (1 - i) +O ((1 _ i) )

20 2f 24 24

This expansion translates into the following asymptotic for the coefficient at 2™,
i.e. the total number of hairpins in all secondary structures of size n:

Lemma 3 In all secondary structures of size n there are asymptotically

zd”\/% (i\/ 30/5 — 50 (1 - i) 4 V9s0 + 486\/5) +0 ("),

20 8n 320n
hairpins, n — o0.

By dividing this total number by the asymptotical number of secondary structures
of size n we find:
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Theorem 16 The expected number of hairpins in a random secondary structure
of size n is asymptotically given by

<1—§\/§>n+£——\/_+(’)( Y, n — oo.

Now we apply these substitutions to R, in order to compute the number of
hairpins in a secondary structure of order p. For a := z we find

Vhz =1 (—1 + 2z + hz3>
z—1 ! 2V hzd ’

with the first partial derivative with respect to h evaluated at h = 1

27(2% — 1+ 2) cos (2 arceos (=242

. _ 3
4sin? (27 arccos | =LE22t22) ) 52
225/2

=:Rp(2)
1+2(z—1)
223/2 gin (21’ arccos ( 1;252/;“3)) \/4 1+2z+z3

Because of its pole of second order, only the part denoted by Rp(z) contributes
to the leading term of the asymptotic. Furthermore, besides the non singular
factor of R,(z), this generating function is identical with IA%S)(Z) of the previous
section. Thus, R,(z) possesses the same dominant singularity z(p) as 1%1(71)(2,) and
we can reuse most parts of the computations which were necessary to determine
the expansion at z(p). In this way we find for I,(z) the expansion

1 162(p)° sin?(2777) —2P(2(p)? — 1 + z(p))

(1- =) COP 60 +57 @) L

which translates into the following asymptotic for the coefficient at z™:

Lemma 4 In all secondary structures of size n and order p there are asymptot-
eally

nz(p) " 162(p)° sin®(2P7) —2°(2(p)? — 1+ 2(p))
(2(p)® — 62(p) +5)  (2¢)? 4z(p)?

hairpins, n — 0.

The computation of the expected value yields:
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Theorem 17 The expected number of hairpins in a random secondary structure
of size nand order p is asymptotically given by

4
nil+ , N — 00,
( D7+ ) - 5>
for z(p) the smallest real solution of the equation Z32J;§72_1 = —cos(27P7) for which
0<z(p)— (% -3 5) < 47P holds.
Please recall, that z(p) converges exponentially fast against z(co) := 3 — /5.

For z(p) = z(00) we get exactly the same asymptotic as for secondary structures
of size n and an arbitrary order.

Now we will consider the length of the hairpin-loops. For this purpose we have
to mark each unpaired base within a hairpin-loop by a special variable (say h).
It is obvious, that this leads to the substitutions

, ha 1 1 ha 11 ]
l—hal—a (1-a)2) " "~ 1-a

1 ha(l—a2 "7 2°

v =

After setting a := z the same computations as before lead to the following results:

Theorem 18 In all secondary structures of size n, there are asymptotically

1 (534 1 1
2 ( (1 ) +—————w/6204—981\/5>,

m \ 10 "  8n/) ' 160n

many unpaired bases located in hairpin-loops, n — 00, z4 = % — %\/5 The
expected number of unpaired bases in a random hairpin-loop chosen from all sec-

ondary structures of size n is asymptotically given by
1
— +0(n?
o+ 5 +0(n),

¢ = % + %\/5 the golden ratio, n — oo.

Theorem 19 In all secondary structures of size n and order p, there are asymp-
totically

162(p)® sin?(27P1) —2P(—1 + z(p) + 2(p)?)
(2(p)* = 62(p) +5)>  (27)? 42(p)*(1 - z(p))
many unpaired bases located in hairpin-loops, n — 00, z(p) the smallest real solu-

tion of the equation Z32J;%f;1 = —cos(27Pm) for which 0 < z(p)— (% — % 5) < 4P

holds. The expected number of unpaired bases in a random hairpin-loop chosen
from all secondary structures of size n and order p is asymptotically given by

(1—z(p) ' P57,

for ¢ the golden ratio, n — oo.

—n

nz(p)
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For small examples, the number of bulges and hairpins differs quite a bit. For
example, if we consider the secondary structures of size 6, then there are 17 hair-
pins but only 2 bulges. Therefore, we are faced with the question whether or not
this effect also exists for large structures. Again we can adjust our substitutions
in order to count the bulges and the unpaired bases within the bulges. Within
our approach, the bulges and the tails of a secondary structure are generated by
inserting |* at the appropriate places of a Dyck-word. Thus, translating |* within
the Motzkin word into 1 + 1% for the generating function marks the tails and
each bulge by variable b. The resulting substitutions are given by

2 2
5 a ba 1, a ba ba
= 1 == 1 1
! Zl—a<+1—a>’u 2° (1—a<+1—a>+<+1—a ’
(o)
=21+ :
l1—-a

It remains to take the tails into account, i.e. to prevent that also the tails are
marked by variable b which would lead to an overestimated number of bulges,
which is an easy task. Each secondary structure can be decomposed into

GO,

where the first and the last |[* correspond one-to-one with the tails. By the above
2
substitutions both |* together are translated into (1 + %) while they should

2
have been translated into (1 + 1%‘&) . Now, since

L R —<1+ . )2
l—a) (1—a+ba)? 1—a/’

it is sufficient to multiply the resulting generating functions by m in order
to correct the overestimated number of bulges. Proceeding in this way, we find for
a := z the following representations for the generating function of all secondary
structures, respectively of all secondary structures of order p, with each bulge

marked by b:

23
(1—2)(1 =22+ 2% — 2230 + 2% — 220 + /)’
for ppi= (=14 2+ (=14 0)22) (1 +2(=1+b)22 — 23 + (=2 + b) (=1 + b)2*) (=1 +
z(3 + (=2 + b)z)), respectively
NG -1 (—1+2z+(2b—1)z3+(b—1)bz4) .
(z—1y/(L+ (-1 2/23(1+ (b— 1)2)°

Since the mathematics that has to be done now in order to derive the correspond-
ing results remains the same as for the hairpins, we will present no details.
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Theorem 20 The total number of bulges in all secondary structures of size n s
asymptotically given by

1 (534 1 9
(2 (11— —) = —— /420 + 461
“ ( 10 ( 8n> T60n ¥ 12010 \/5>

3 1

n— 00, z2d = 5 — 5\/5. For a random secondary structure of size n the expected

number of bulges is asymptotically

3WH—-5 61 21 .
Tn—2—0+2—0\/5+0(n ), N — 00.

Thus there are about 1.618 times as many bulges than hairpins, i.e. the effect
that can be observed for small structures has been inverted.

Theorem 21 The total number of bulges in all secondary structures of size n
and order p is asymptotically given by

(r)" 16z(p)° sin?(27P71) —2P(=3 + z(p) (3 — z(p)))
nz(p )
(2(p)? — 6z(p) +5)>  (27)? 4z(p)
n — 0o, z(p) the smallest real solution of the equation z32—|;§72—1 = —cos(27Pm) for
which 0 < z(p) — (% — %\/5) < 47P holds. For a random secondary structure of

size n and order p the expected number of bulges is asymptotically

L2+ 2(p)(2(p) — 3))
5—z(p) — 2(p)?
In Figure 14 you find a plot of the slope of the expected number of bulges in a
random secondary structure of order p. As you can see the slope converges very
fast to its limit.
As for the hairpin-loops we now will determine the number of unpaired bases
which belong to the bulges. The appropriate substitutions result from the trans-

, N — 00.

2
formation of |* into TIML with the factor (%) for correcting the overestimated
number of unpaired bases. The same methods as before can be used to prove the

following theorems:

Theorem 22 The total number of unpaired bases within bulges of secondary
structures of size n is asymptotically given by

1 /1 1 1
= (/504 30v5 (1 — —) — —— /532890 + 260246\/5
A (20 + f( 8n> 32071\/ + f)’

3 1

n— 00, 24 = 4§ — 5\/5. For secondary structures of size n the expected number

of unpaired bases in a random bulge is asymptotically

1035 + 279v/5 — /1301230 + 532080v/5
o+ 160n *

¢ = % + %\/5 the golden ratio, n — oo.

O(n?),
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0.195 4

0.19

0.185 4

0.18 1

0.175 4

0177 2 3 4 5 6 7 8

Figure 14: The slope of the expected number of bulges for different values of p.

Thus, the expected length of a hairpin-loop and that of a bulge only differ in the
n~! term where the difference is only marginal (5= compared to 0.49960...n7").
For the secondary structures of a given order we find

Theorem 23 The total number of unpaired bases within bulges of secondary
structures of size n and order p is asymptotically given by

Y 162(p)® sin(27?7) —2(3 + z(p)(2(p) — 3))
(2(p)* — 62(p) +5)*  (2)? 42(p)(z(p) = 1) 7
n — 0o, z(p) the smallest real solution of the equation % = —cos(27Pm) for

which 0 < z(p) — (% — %\/5) < 47P holds. For secondary structures of size n and

order p the expected number of unpaired bases in a random bulge is asymptotically

(1—z(p) "= ¢,

for ¢ the golden ratio, n — oo.

nz(p)

Finally, please note that it is obviously no problem to compute higher moments
for the results presented from our generating functions by just considering higher
derivatives with respect to h, resp. b.

7 Conclusions

In this paper we have solved the old problem of how to determine the number
of secondary structures of size n and order p raised by Waterman in 1978. The
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approach that led to the solution of this problem is general enough to allow
us to derive many more results in the context of secondary structures, some of
them were presented here. Whenever the order p of the structures was used as
a parameter, then z(p), the smallest real zero of a polynomial of sixth degree,
pops up. This zero has yet not been determined precisely, even though there
are methods (based on the work of Klein) which would provide a representation
of the zeros of a sextic by means of hypergeometic functions in one variable.
It looks like a challenging task to use these methods in order to find an exact
representation of z(p).

The combinatorial model considered in this paper disregards numerous details of
the folding mechanism for real single stranded nucleic acids. For example we do
not take into account that base-pairing is not possible between arbitrary pairs of
nucleotides. In reality the positions at which base pairs may occur is dependent
on the base composition of the actual sequence. In [28] a stochastic approach
to this problem going back to [11] and [25] is discussed. Let us assume that the
different bases possess a Bernoulli distribution and that p(A) (resp. p(C); p(G);
p(U)) denotes the probability for the occurence of base A (resp. C; G; U) in the
primary structure. Then p := 2(p(A)p(U)+p(C)p(G)) is the probability that any
two bases can form a hydrogen bound. This idea can be generalized by considering
an arbitrary set of symbols together with an appropriate probability p which then
usually is denoted stickiness [14]. It is possible to consider random sequences with
these Bernoulli distributions by setting 2z to z,/p within our generating functions.
In this case the generating functions do not provide explicit enumeration results
but their coefficients are related to the expectation of the parameter considered.
As an example [2"]T(z,/p, z) is the expected number of secondary structures of
size n. Numerous results for this model of a random secondary structure can be
found in [18].
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