
Evaluating Algorithms according to their Energy
Consumption

Hannah Bayer and Markus Nebel

University of Kaiserslautern, Department of Computer Sciences,
Gottlieb-Daimler-Strasse, 67633 Kaiserslautern, Germany,

{h bayer,nebel}@informatik.uni-kl.de

Abstract. This work deals with the evaluation of algorithms according
to their energy consumption. So far it was a common belief that faster
algorithms consume less energy than slower ones. This work presents
results indicating that this is not universally valid. For this purpose an
energy model shall be introduced which is used to determine the energy
consumption of algorithms with regard to the input size. Thereafter the
algorithms will be compared to each other regarding both to their run
time and energy consumption.

Keywords: power consumption, analysis of algorithms, algorithm en-
gineering

1 Motivation

Conventionally algorithm engineering is concerned with the run time and al-
gorithms have therefore been evaluated with respect to their performance. Ac-
cordingly the run time of algorithms was the ultimate factor to be analyzed and
optimized over the past years. However, over the years processors got faster and
consumed more energy and the variety of fields where computers and embedded
systems are used grew. So nowadays the power consumption of algorithms is an
important factor to be taken into account.
There are many differently motivated reasons for trying to find ways to save
energy consumed by computers which shall not be exhausted here. Existing
solutions for minimizing energy consumption are multifaceted and span all com-
ponents and architectural layers. There ACPI is to be mentioned, which allows
the operating system to gain direct control over the power consumption as it can
power down components after some time of inactivity. Another approach is to
change the voltage according to the load of the system like in [Hsu03] and thus
lower the power consumption. A lower consumption can naturally be realized
through optimizations of hardware too but this seldom had been the main goal
for the development of new processors. Finally the optimization of software shall
be contemplated where previous works have already developed methods to lower
the power consumption of algorithms.The main idea there is to optimize the pro-
cess of compiling programs written in higher languages to assembler or machine



code. As an example [LKHcT00] should be mentioned were the consumption is
lowered by choosing a special alignment of the instructions. Some of those works
as [SKWM01,LTMF95,The05,SL01,CKL00,TMW94,TMWL96,CKL02,GN00] do
not directly derive methods to reduce the power consumption but present tech-
niques and models to calculate the actual power consumed by an algorithm.
Additionally there are papers concerning tools ([HKS+07] and [SC01]) simulat-
ing the energy consumption.
In the sequel it shall be described how the simulation tool XEEMU ([HKS+07])
can be used to compare the power consumption of algorithms and a theoretical
model shall be introduced which allows for the quantification of power consumed
during the execution of algorithms written in assembler code. Even if it is com-
mon belief that faster algorithms need less energy – and knowledge of their run
time therefore is sufficient – the simulations and calculations based on the model
to be introduced will be used to analyze the expected energy consumption of
several algorithms from searching and sorting. As a surprise the results show
that there are pairs of algorithms where the faster one consumes more energy.
The rest of this paper is organized as follows. First some informations about the
general approach will be given, in section 3 the preconditions for the simulation
will be elucidated and the results of the simulations performed will be presented.
Section 4 contains the development of the theoretical model whereas section 5
engages in the discussion of the results of this model.

2 Preliminaries

The algorithms to be analyzed are taken out of the range of searching an sorting
algorithms. To refer to a consistent base the assembler code MIX [Knu98] will
be used to describe the different algorithms for the theoretical model as well as
for the simulation. As MIX has some instructions that do not exist the mod-
ern processors it is required that those instructions are ”simulated” by two ore
more independent instructions on the processors to be simulated and those to be
modelled . To retrieve concrete data two processors will be used, the proprietary
DSP from Fujitsu and the ARM7TDMI commonly used in high end embedded
systems whereas the simulation tool XEEMU can be used to simulate the power
consumption of an ARM5-processor. Even if the power consumption of proces-
sors for embedded systems is already optimized somewhat comparing to other
processores nevertheless it will be interesting, for the design of embedded sys-
tems did potentially take other possibilities of reduction of power consumption
into account and maybe the prospects of those have already been exhausted.

3 Simulation and first results

To gain a first impression of the power consumption of algorithms we will present
the results from the simulation of certain searching algorithms originated from
simulation with XEEMU ([HKS+07]) which were derived during the work of a
student [Bra08]. For every algorithm the average run time and the average power



consumption were derived from several passes of simulations. As the effects of
cache misses change with different cache hierachies and different sizes of cache
the effects do not merely depend on the algorithm itself. Hence, the cache size in
XEEMU is set thus that no cache misses will take place after an initial process
of once reading all elements (the power consumption of this process will be
subtracted from the total power consumption). For the simulation of the average
power consumption two versions were derived; one including and one excluding
the power consumption of the cache. The latter will be interesting as the cache
size is (as described above) chosen to be large and as a larger cache consumes
more power (for example for cache management) the total power consumption
is thus fairly dominated by the power consumption of the cache. In the sequel
the average case results for three different types of sequential sorting algorithms
will be presented as well as results for Binary Search, Uniform Binary Search
and Fibonaccian Search. In Figure 1 it can be seen that for the run time the
Sequential Search is significantly slower than the other two algorithms and it
shows that the power consumption of all three algorithms appear to be the same
if the consumption of the cache is taken into account. If this consumption is
substracted it shows that there are differences between all three algorithms and
thus shows that even if the Quicker Sequential Search is not significantly faster
than the Quick Sequential Search it consumes less power. The Figure 2 pictures

Fig. 1: Average Run time /Average Power consumption with cache consumption /with-
out cache consumption (Appendix Figures 7,8 and 9).

the run time and the power consumption of Binary Search, Uniform Binary
Search and Fibonaccian Search. Relative to the run time the Fibonaccian Search
is clearly the worst of the three algorithms whereas it cannot be stated clearly
which one of the other two algorithms is the faster one. Considering the total
power consumption including the consumption of the cache Figure 2 shows that
the Fibonaccian Search is better than the Binary Search which should be chosen
over the Uniform Binary Search. If one does not take the consumption of the
cache into account the Fibonaccian Search seems not to be the best but not the
worst either whereas it shows that the Binary Search seems to consume more
power than the Uniform Binary Search at most input sizes.
Thus it can be seen that the correlation between run time an power consumption



Fig. 2: Average Run time /Average Power consumption with cache consumption /with-
out cache consumption (Appendix Figures 10,11 and 12).

is not necessarily existing. As the simulation of algorithms does take a lot of time
especially for the average case further examinations were made with the help of a
theoretical model that can be directly applied to algorithms written in assembler
code.

4 Energy Model

We will continue by describing our model and its derivation. In [LTMF95] a
model based on a risc-architecture is presented. According to this work, the
main power consumption can be divided into two parts. One part is based on
the instructions and the other one is based on the actual data used. Different in-
structions are performed by different components of the processor like the ALU
or the multiplier or by a combination of components. As those components con-
sume different amounts of power this results in different power consumptions
for the variety of instructions. Furthermore, since not every component of the
processor is used for every instruction components can be switched off when they
are not used. Switching components off and on consumes energy and is therefore
required to be noticed in an energy model. The power consumption in the CPU
resulting from the processed data depends on the number of ones in the binary
representation in the actual input and on the hamming-distances between two
following sets of data the so-called bit-toggling.
Another model presented in [SKWM01] basically discriminates between two dif-
ferent kinds of power consumption, the consumption of the instruction itself and
the consumption of the overhead resulting of the on and off switching of com-
ponents. Furthermore this model does account for the consumption of pipeline
stalls and cache misses.
The model shall analyze the power consumption as independently as possible
from the data processed, therefore all mere data-dependend power consump-
tion shall be left unregarded. Furthermore Pipeline stalls will not be accounted
for as it is hard to calculate how often they are going to occur on average for
a given algorithm with a specific size of input and as the existing knowledge
regarding the power consumption of pipeline stalls is limited. In contrast the



existing informations about power consumption referring to cache misses could
be used easily, but average case analysis of cache misses is yet not very common
and therefore the existing results concerning their occurence are few and not
very exact. Hence, only the consumption of the instructions and the overhead
between two instructions will be taken into account.The conclusions drawn later
all are subject to the presumption that pipeline stalls and cache misses do not
alter the results if the effects of those would be considered in the model.
Further on it is presumed that the instructions of the processor to be modeled
can be ordered into groups where all instruction contained in one group do have
a very similar power consumption and the overhead between an instruction and
another is nearly the same for all other instructions of the same group.
As the algorithms to be analyzed are written in the assembly language MIX, ev-
ery instruction of this language will be filed into one such group. Since the goal
is an energy model which can be applied to a wide variety of processors those
groups are defined in a way that not only the instruction set of one processor
will fit into it. This results in some groups having the same power consumption
for a specific processor and the same overhead for the switching from and to
other groups. The actual grouping is listed in the appendix.
We will use the following notation (as denoted in the example below): Every
group is assigned with a factor standing for the value of the power consumption,
for the overhead between two groups the factor will be noted as the names of the
factors of the two groups separated by a colon. The value of the factors change
according to the processor to be modeled; the actual values for the two processors
are listed in the appendix as well. Below the application of the energy model to
Sequential Search will be discussed to exemplify how algorithms were analyzed.
The algorithm in Figure 3 is directly adopted from [Knu98] supplemented with
the overhead between two instruction and the group-factor of instructions and
overheads.

line label instruction number of executions group-factor
1 START LDA K 1 α1

2 1 α1 : α6

3 ENT1 1-N 1 α6

4 1 α6 : α8

5 2H CMPA KEY+N,1 C α8

6 C α8 : α11

7 JE SUCCESS C α11

8 C-S α11 : α7

9 INC1 1 C-S α7

10 C-S α7 : α11

11 J1NP 2B C-S α11

12 FAILURE EQU * 1-S

Overhead resulting of Jumps: line 11 to line 5: C-1 times α11 : α8

Fig. 3: MIX Code amended for the analysis.



Initially the accurate values for the occurrences of the instructions and the
overheads are calculated based on input size N . In addition the run time is
evaluated.

Analysis for a successfull search
The following formulas are adopted from [Knu98].
S = 1
The number of comparisons is based on the assumption that every element
of the searched set of elements is searched with the same probability.
C = N+1

2
Run time in u (Units of time) [Knu98]: (2, 5 ·N + 3, 5) u
Average Power consumption

To analyze the power consumption of an algorithm one does only have to
add the quantities of the factors which depend on the size of input. E =
α1 + α1 : α6 + α6 + α6 : α8 +C · (α8 + α8 : α11 + α11) +(C − S)(α11 :
α7 + α7 + α7 : α11 + α11) +(C − 1)(α11 : α8)
With the values for the group-factors from the appendix the following power
consumption of the two processors can be derived:
DSP E = (92, 55 + 109, 75 ·N)mA
ARM7TDMI E = (113.025 + 114, 165 ·N)mA

Now it is easy to compare algorithms regarding their power consumption. To
visualize this the run time and the power consumption of the algorithms to be
compared have been put into different plots (see for example Figure 4), where
the x-axis is the input size and the y-axis is the run time or respectively the
power consumption. It can be seen easily which algorithm is faster and which
algorithm has the lower power consumption.
Another interesting fact to consider is the leakage power which is the power that
is always consumed whether the processor is idle or not. The crucial point is now
to learn if an idle processor would be turned off immediately the leakage power
would affect the above statements concerning the evaluation according to the
power consumption. If there are two algorithms (with the slower one consuming
less energy) the first with the run time t and the power consumption e and the
second respectively with t′ and e′ one only needs to solve the equation

e + t · l = e′ + t′ · l

for l. Thus with l one gets the leakage power it would take to delete the observed
discrepancy between run time and energy consumption. If l is larger than the
leakage power of the specific processor the discrepancy holds if leakage power is
taken into account.

5 Results

For most problems it does apply that the fastest algorithm is the one with the
lowest power consumption like for example for quicksort compared with merge



sort or heapsort. But there are exceptions that cannot be disregarded. Those
exceptions can be divided into different types. First are those algorithms that
are faster but consume more energy than other algorithms for certain scopes of
input sizes. Secondly those that are faster but consume more energy for all input
sizes and last there are those where the statement of the second type holds true
even when leakage power is taken into account. Good examples of the first kind
are given by the algorithms for sequential search.
The Figure 4 illustrates the average case run time and the power consumption
of Sequential Search, Quick Sequential Search and Quicker Sequential Search as
described in [Knu98]. Whereas one cannot see a significant difference between
the run time and the power consumption for great input sizes this is different
for small input sizes as shall be seen in the sequel.

Fig. 4: Average Run time/ Average Power consumption DSP/ Average Power consump-
tion ARM7TDMI (Appendix Figures 13,14 and 15).

The following table depicts the intersection points of the graphs regarding
the size of input for the three types of sequential searches and thus shows the
scope of input sizes, where the faster algorithm consumes more energy than the
slower one.

Run time Power consumpt. DSP Power consumpt. ARM7TDMI

Sequential Search & Quick Sequ.
S.

9 6,58 7,057

Sequential Search & Quicker Sequ.
S.

6,667 7,077 7,936

Quick Sequ. Search & Quicker
Sequ. S.

2 7,763 9,443

As shown in the table above the intersection points of the graphs of the run
time and the power consumption do not result from the same input sizes. For
example whereas ”Quicker Sequential Search” is to be preferred to ”Quick Se-
quential Search” at almost any input size regarding the run time the same does
not hold for the energy consumption. Therefore it would be better to use ”Quick
Sequential Search” for smaller input values and to switch to ”Quicker Sequential
Search” for larger input values to save energy.



The algorithms ”Uniform Binary Search” and ”Fibonaccian Search” shall exem-
plify the second kind. In Figure 5 one can see that with regard to the run time

Fig. 5: Average Run time/ Average Power consumption DSP/ Average Power consump-
tion ARM7TDMI (Appendix Figures 16,17 and 18).

the ”Fibonaccian Search” should be preferred to the ”Uniform Binary Search”
this cannot be said regarding the power consumption. Looking at the consump-
tion of the DSP the ”Fibonaccian Search” is slightly worse but with regard to
the ARM7TDMI the discrepancy becomes significant. Furthermore it is to be
mentioned that the graphs plotted above are only those for the average case but
the basic message is the same for the worst case.
If leakage power is accounted for the result changes for the power consumption
of the DSP, the ”Fibonaccian Search” does no longer consume more energy then
the ”Uniform binary search”. Contrary to that the result does not change for
the ARM7TDMI.
Similarly significant is the comparison of ”Straight Insertion Sort”, ”Straight
Selection Sort” and ”List Insertion Sort”.

Fig. 6: Average Run time/ Average Power consumption DSP/ Average Power consump-
tion ARM7TDMI (Appendix Figures 19,20 and 21).

In Figure 6 again the average case is plotted. Similar to the illustration above
for the binary searches it can be stated for the sorting algorithms illustrated that



the fastest algorithms is not the one with the lowest energy consumption. Re-
garding the run time ”List Insertion Sort” is the worst algorithm but regarding
the power consumption on the DSP it is the best and ”Straight Selection Sort”
is the worst regarding the power consumption of both DSP and ARM7TDMI
but has definitely not the longest run time. Again the shown plots pictures the
average case but in difference to the binary search algorithms the average case
is unlike the worst case but nonetheless in the worst case the order of the algo-
rithms changes as well from run time to energy consumption.
The results for the quadratic sorting algorithms do not change by taking the
leakage power into account and thus the algorithms are of the third kind men-
tioned above.

6 Resume

Our analysis and simulation has proven that, assuming our model to be realistic,
the faster algorithm is not necessarily the one with the lower power consumption.
Even if one takes account of leakage power the gained results almost always
keep the same. Considering using different algorithms to save energy requires
to analyze the relevant algorithms according to the specific processor. For some
problems an appropriate use of the right algorithm could save a great amount
of energy especially if a particular problem is solved very frequently.
As the obtained results are based on a theoretical model and the simulation
of few algorithms on one processor the next step will be to affirm the results
on basis of more simulation. Further on there are some options to improve the
existing model and data. To examine the behaviour of algorithms to the energy
consumption on specific processors more closely it would be necessary to explore
the effect of cache misses and pipeline stalls. Another interesting option would
be to apply the existing energy model to more processors especially to processors
not designed for embedded systems.

References

[Bra08] Tobias Braun. Energieverbrauch von Suchalgorithmen. Projektarbeit,
Technische Universität Kaiserslautern, September 2008.

[CKL00] Naehyuck Chang, Kwanho Kim, and Hyung Gyu Lee. Cycle-accurate en-
ergy consumption measurement and analysis: case study of ARM7TDMI.
In ISLPED ’00: Proceedings of the 2000 international symposium on Low
power electronics and design, pages 185–190, New York, NY, USA, 2000.
ACM.

[CKL02] Naehyuck Chang, Kwanho Kim, and Hyung Gyu Lee. Cycle-accurate
energy measurement and characterization with a case study of the
ARM7TDMI. IEEE Trans. Very Large Scale Integr. Syst., 10(2):146–154,
2002.

[GN00] S. Gupta and F. Najm. Power Modeling for High-level Power Estimation.
In 1EEE Transactions on Very Large Scale Integration (VLSI) Systems,
volume 8, pages 18–29, 2000.



[HKS+07] Zoltán Herczeg, Ákos Kiss, Daniel Schmidt, Norbert Wehn, and Tibor
Gyimóthy. XEEMU: An Improved XScale Power Simulator. In PATMOS,
pages 300–309, 2007.

[Hsu03] Chung-Hsing Hsu. Compiler-directed dynamic voltage and frequency scaling
for cpu power and energy reduction. PhD thesis, New Brunswick, NJ, USA,
2003.

[Knu98] Donald E. Knuth. The Art of Computer Programming, volume 3 Sorting
and Searching. Addison Wesley, 2. edition, 1998.

[LKHcT00] Chingren Lee, Jenq Kuen, Lee Tingting Hwang, and Shi chun Tsai. Com-
piler optimization on instruction scheduling for low power. In In 13th
International Symposium on System Synthesis. ACM, Septermber, pages
55–60. ACM Press, 2000.

[LTMF95] Mike Tien-Chien Lee, Vivek Tiwari, Sharad Malik, and Masahiro Fujita.
Power analysis and low-power scheduling techniques for embedded DSP
software. In ISSS ’95: Proceedings of the 8th international symposium on
System synthesis, pages 110–115, New York, NY, USA, 1995. ACM.

[SC01] Amit Sinha and Anantha P. Chandrakasan. JouleTrack: a web based tool
for software energy profiling. In DAC ’01: Proceedings of the 38th confer-
ence on Design automation, pages 220–225, New York, NY, USA, 2001.
ACM.

[SKWM01] Stefan Steinke, Markus Knauer, Lars Wehmeyer, and Peter Marwedel. An
accurate and fine grain instruction-level energy model supporting software
optimizations. In in Proc. Int. Wkshp Power and Timing Modeling, Opti-
mization and Simulation (PATMOS), 2001.

[SL01] Sang Lyul Min Sheayun Lee, Andreas Ermedahl. An Accurate Instruction-
level Energy Consumption Model for Embedded Risc Processors. ACM
SIGPLAN Notices, 36, August 2001.

[The05] Michael Theokaridis. Measuring Energy consumption of ARM7TDMI Pro-
cessor Instructions. Master’s thesis, Technische Universität Dortmund, Juni
2005.

[TMW94] V. Tiwari, S. Malik, and A. Wolfe. Power analysis of embedded software:
a first step towards software power minimization. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 2(4):437–445, 1994.

[TMWL96] Vivek Tiwari, Sharad Malik, Andrew Wolfe, and Mike Tien-Chien Lee.
Instruction level power analysis and optimization of software. J. VLSI
Signal Process. Syst., 13(2-3):223–238, 1996.



7 Appendix

A Larger Pictures

Fig. 7: Average Run time (XEEMU): Sequential Search, Quick Sequential Search,
Quicker Sequential Search.

Fig. 8: Average Power Consumption with cache (XEEMU): Sequential Search, Quick
Sequential Search, Quicker Sequential Search.



Fig. 9: Average Power Consumption without cache (XEEMU): Sequential Search, Quick
Sequential Search, Quicker Sequential Search.

Fig. 10: Average Run time (XEEMU): Binary Search, Uniform Binary, Search Fibonac-
cian Search.



Fig. 11: Average Power Consumption with cache (XEEMU): Binary Search, Uniform
Binary, Search Fibonaccian Search.

Fig. 12: Average Power Consumption without cache (XEEMU): Binary Search, Uniform
Binary, Search Fibonaccian Search.



Fig. 13: Average Run time (MIX): Sequential Search, Quick Sequential Search, Quicker
Sequential Search

Fig. 14: Average Power Consumption DSP: Sequential Search, Quick Sequential Search,
Quicker Sequential Search



Fig. 15: Average Average Power Consumption ARM7TDMI: Sequential Search, Quick
Sequential Search, Quicker Sequential Search

Fig. 16: Average Run time (MIX): Binary Search, Uniform Binary Search, Fibonaccian
Search



Fig. 17: Average Power Consumption DSP: Binary Search, Uniform Binary Search,
Fibonaccian Search

Fig. 18: Average Power Consumption ARM7TDMI: Binary Search, Uniform Binary
Search, Fibonaccian Search



Fig. 19: Average Run time (Mix): Straight Insertion Sort, List Insertion Sort, Straight
Selection Sort.

Fig. 20: Average Power Consumption DSP: Straight Insertion Sort, List Insertion Sort,
Straight Selection Sort.



Fig. 21: Average Power Consumption ARM7TDMI: Straight Insertion Sort, List Inser-
tion Sort, Straight Selection Sort.



B Division of instructions

Following the instructions of the MIX-languages are divided into functional
groups.

1. Load-instructions for registers A and X weighted with factor α1:
LDA
LDX
LDAN
LDXN

2. Load-instructions for other registers and ans save-instructions for all register
weighted with factor α2:
LDi
LDiN
STA
STX
STi
STJ
STZ

3. Add- and subtract-instruction weighted with factor α3:
ADD
SUB

4. Multiply-instructions weighted with factor α4:
MUL

5. Divide-instructions weighted with factor α5:
DIV

6. Load-instructions for Immediates to a register weighted with factor α6:
ENTA
ENTX
ENTi
ENNA
ENNX
ENNi

7. Addition/subtraction of Immediates weighted with factor α7:
INCA
INCX
INCi
DECA
DECX
DECi



8. Comparisons weighted with factor α8:
CMPA
CMPX
CMPi

9. Unconditoned jump weighted with factor α9:
JMP

10. Unconditioned jump with saving of the jump-address weighted with factor
α10

JSJ

11. Conditioned jump weighted with factor α11:
JOV
JNOV
JL
JE
JG
JGE
JNE
JLE
JAN
JAZ
JAP
JANN
JANZ
JANP
JXN
JXZ
JXP
JXNN
JXNZ
JXNP
JiN
JiZ
JiP
JiNN
JiNZ
JiNP

12. Shift-operation on one register weighted with factor α12:
SLA
SRA

13. Shift-operation on two registers weighted with factor α13:
SLAX



SRAX
SLC
SRC

14. Move-operation within the central memory weighted with factor α14:
MOVE

15. NOP weighted with 0.

16. HLT weighted with 0.

17. I-/O-Operationen weighted with factor α15:
IN
OUT
IOC

18. Jump-operations testing the secondary memory weighted with factor α16:
JRED
JBUS

19. Conversional operations weighted with factor α17:
NUM
CHAR

20. Moving of register contents weighted with factor α18:
(i,j Registernummer)
ENTA 0,j
ENTX 0,j
ENTi 0,j
ENNA 0,j
ENNX 0,j
ENNi 0,j

21. Moving of register contents + adding of an immediate weighted with factor
α19:
(i,j Registernummer, l 6= 0)
ENTA l,j
ENTX l,j
ENTi l,j
ENNA l,j
ENNX l,j
ENNi l,j



C Concrete Values for the DSP

The values for the DSP instructions are extracted from [SKWM01]. There the
instructions were already ordered into groups named LAB, MOV1, MOV2, ASL
and LDI. Below the factors of the instruction groups of the MIX-language are
assigned to appropriate values.

C.1 Instructions

α1 = LAB = 36, 5 mA
α2 = MOV 2 = 18, 4 mA
α3 = LAB + LAB : ASL + ASL = 73, 9 mA
α4 = LAB + LAB : MAC + MAC = 68, 7 mA
α5 = LAB + LAB : ASL + ASL = 73, 9 mA
α6 = LDI = 19, 4 mA
α7 = ASL = 16, 5 mA
α8 = LAB + LAB : ASL + ASL = 73, 9 mA
α9 = MOV 2 = 18, 4 mA
α10 = MOV 2 = 18, 4 mA
α11 = MOV 2 = 18, 4 mA
α12 = ASL = 16, 5 mA
α13 = 2 ·ASL + ASL : ASL = 36, 6 mA
α14 = 2 ·MOV 2 + MOV 2 : MOV 2 = 62, 4 mA
α15 was not used for this paper.
α16 = 2 ·MOV 2 + MOV 2 : MOV 2 = 62, 4 mA
α17 = ASL = 16, 5 mA
α18 = MOV 1 = 19, 8 mA
α19 = MOV 1 + MOV 1 : ASL + ASL = 46, 8 mA



C
.2

O
ve

rh
ea

d

T
he

fo
llo

w
in

g
ta

bl
e

pr
es

en
ts

th
e

va
lu

es
fo

r
th

e
ov

er
he

ad
be

tw
ee

n
tw

o
in

st
ru

ct
io

ns
.

It
sh

ou
ld

be
no

te
d

th
at

as
on

e
M

IX
-

in
st

ru
ct

io
n

ca
n

co
ns

is
t

of
se

ve
ra

l
D

SP
-i
ns

tr
uc

ti
on

th
e

or
de

r
of

th
e

in
st

ru
ct

io
ns

is
re

le
va

nt
.

α
1

α
2

α
3

α
4

α
5

α
6

α
7

α
8

α
9

α
1
0

α
1
1

α
1
2

α
1
3

α
1
4

α
1
5

α
1
6

α
1
7

α
1
8

α
1
9

α
1

2
,5

1
2
,2

2
,5

2
,5

2
,5

1
3
,7

2
0
,9

2
,5

1
2
,2

1
2
,2

1
2
,2

2
0
,9

2
0
,9

1
2
,2

?
1
2
,2

2
0
,9

1
,9

1
,9

α
2

1
2
,2

2
5
,6

1
2
,2

1
2
,2

1
2
,2

6
,3

2
6
,7

1
2
,2

2
5
,6

2
5
,6

2
5
,6

2
6
,7

2
6
,7

2
5
,6

?
2
5
,6

2
6
,7

1
8
,3

1
8
,3

α
3

2
0
,9

2
6
,7

2
0
,9

2
0
,9

2
0
,9

1
0
,8

3
,6

2
0
,9

2
6
,7

2
6
,7

2
6
,7

3
,6

3
,6

2
6
,7

?
2
6
,7

3
,6

1
0
,5

1
0
,5

α
4

1
5

2
2
,2

1
5

1
5

1
5

6
,0

8
,0

1
5

2
2
,2

2
2
,2

2
2
,2

8
,0

8
,0

2
2
,2

?
2
2
.2

8
,0

3
,8

3
,8

α
5

2
0
,9

2
6
,7

2
0
,9

2
0
,9

2
0
,9

1
0
,8

3
,6

2
0
,9

2
6
,7

2
6
,7

2
6
,7

3
,6

3
,6

2
6
,7

?
2
6
,7

3
,6

1
0
,5

1
0
,5

α
6

1
3
,7

6
,3

1
3
,7

1
3
,7

1
3
,7

3
,6

1
0
,8

1
3
,7

6
,3

6
,3

6
,3

1
0
,8

1
0
,8

6
,3

?
6
,3

1
0
,8

1
5
,5

1
5
,5

α
7

2
0
,9

2
6
,7

2
0
,9

2
0
,9

2
0
,9

1
0
,8

3
,6

2
0
,9

2
6
,7

2
6
,7

2
6
,7

3
,6

3
,6

2
6
,7

?
2
6
,7

3
,6

1
0
,5

1
0
,5

α
8

2
0
,9

2
6
,7

2
0
,9

2
0
,9

2
0
,9

1
0
,8

3
,6

2
0
,9

2
6
,7

2
6
,7

2
6
,7

3
,6

3
,6

2
6
,7

?
2
6
,7

3
,6

1
0
,5

1
0
,5

α
9

1
2
,2

2
5
,6

1
2
,2

1
2
,2

1
2
,2

6
,3

2
6
,7

1
2
,2

2
5
,6

2
5
,6

2
5
,6

2
6
,7

2
6
,7

2
5
,6

?
2
5
,6

2
6
,7

1
8
,3

1
8
,3

α
1
0

1
2
,2

2
5
,6

1
2
,2

1
2
,2

1
2
,2

6
,3

1
2
,2

1
2
,2

2
5
,6

2
5
,6

2
5
,6

2
6
,7

2
6
,7

2
5
,6

?
2
5
,6

2
6
,7

1
8
,3

1
8
,3

α
1
1

1
2
,2

2
5
,6

1
2
,2

1
2
,2

1
2
,2

6
,3

2
6
,7

1
2
,2

2
5
,6

2
5
,6

2
5
,6

2
6
,7

2
6
,7

2
5
,6

?
2
5
,6

2
6
,7

1
8
,3

1
8
,3

α
1
2

2
0
,9

2
6
,7

2
0
,9

2
0
,9

2
0
,9

1
0
,8

3
,6

2
0
,9

2
6
,7

2
6
,7

2
6
,7

3
,6

3
,6

2
6
,7

?
2
6
,7

3
,6

1
0
,5

1
0
,5

α
1
3

2
0
,9

2
6
,7

2
0
,9

2
0
,9

2
0
,9

1
0
,8

3
,6

2
0
,9

2
6
,7

2
6
,7

2
6
,7

3
,6

3
,6

2
6
,7

?
2
6
,7

3
,6

1
0
,5

1
0
,5

α
1
4

1
2
,2

2
5
,6

1
2
,2

1
2
,2

1
2
,2

6
,3

2
6
,7

1
2
,2

2
5
,6

2
5
,6

2
5
,6

2
6
,7

2
6
,7

2
5
,6

?
2
5
,6

2
6
,7

1
8
,3

1
8
,3

α
1
5

α
1
6

1
2
,2

2
5
,6

1
2
,2

1
2
,2

1
2
,2

6
,3

2
6
,7

1
2
,2

2
5
,6

2
5
,6

2
5
,6

2
6
,7

2
6
,7

2
5
,6

?
2
5
,6

2
6
,7

1
8
,3

1
8
,3

α
1
7

2
0
,9

2
6
,7

2
0
,9

2
0
,9

2
0
,9

1
0
,8

3
,6

2
0
,9

2
6
,7

2
6
,7

2
6
,7

3
,6

3
,6

2
6
,7

?
2
6
,7

3
,6

1
0
,5

1
0
,5

α
1
8

1
,9

1
8
,3

1
,9

1
,9

1
,9

1
5
,5

0
,5

1
,9

1
8
,3

1
8
,3

1
8
,3

1
0
,5

1
0
,5

1
8
,3

?
1
8
,3

1
0
,5

4
,0

4
,0

α
1
9

2
0
,9

2
6
,7

2
0
,9

2
0
,9

2
0
,9

1
0
,8

3
,6

2
0
,9

2
6
,7

2
6
,7

2
6
.7

3
,6

3
,6

2
6
,7

?
2
6
,7

3
,6

1
0
,5

1
0
,5



D Concrete values for the ARM7TDMI

The values for the ARM7TDMI are derived from [The05]. There all instructions
were listed and therefor the values following are generated from the average value
for the several groups.

D.1 Instructions

α1 = 46, 5 mA
α2 = 50, 18 mA
α3 = 46, 5 + 2, 05 + 41, 35 = 89, 9 mA
α4 = 46, 5 + 2, 5 + 50, 15 = 99, 15 mA
α5 was not used for this paper.
α6 = 41, 3 mA
α7 = 41, 6 mA
α8 = 41, 2 + 2, 05 + 46, 5 = 89, 75 mA
α9 = 42, 9 mA
α10 = 42, 3 mA
α11 = 41, 69 mA
α12 = 43, 7 mA
α13 = 45, 03 mA
α14 = 100, 37 + 0, 4 = 100, 77 mA
α15 was not used for this paper.
α16 = α1 + α1 : α11 + α11 = 46, 5 + 2, 05 + 41, 69 = 90, 24 mA
α17 was not used for this paper.
α18 = α6 + α6 : α3 + α3 = 41, 3 + 3, 8 + 89, 9 = 135 mA
α19 = α6 + α6 : α3 + α3 = 135 mA



D
.2

O
ve

rh
ea

d

A
s

ab
ov

e
th

e
or

de
r

of
th

e
in

st
ru

ct
io

ns
ca

n
ch

an
ge

th
e

ov
er

he
ad

.
α

1
α

2
α

3
α

4
α

5
α

6
α

7
α

8
α

9
α

1
0

α
1
1

α
1
2

α
1
3

α
1
4

α
1
5

α
1
6

α
1
7

α
1
8

α
1
9

α
1

0
,
4

0
,
4

0
,
4

0
,
4

?
2
,
0
5

2
,
0
5

0
,
4

2
,
0
5

2
,
0
5

2
,
0
5

2
2

0
,
4

?
0
,
4

?
2
,
0
5

2
,
0
5

α
2

0
,
4

0
,
4

0
,
4

0
,
4

?
2
,
0
5

2
,
0
5

0
,
4

2
,
0
5

2
,
0
5

2
,
0
5

2
2

0
,
4

?
0
,
4

?
2
,
0
5

2
,
0
5

α
3

2
,
0
5

2
,
0
5

2
,
0
5

2
,
0
5

?
3
,
8
5

0
,
2

2
,
0
5

3
,
8
5

3
,
8
5

3
,
8
5

3
,
3

3
,
3

2
,
0
5

?
2
,
0
5

?
2
,
0
5

2
,
0
5

α
4

2
,
0
5

2
,
0
5

2
,
0
5

2
,
0
5

?
3
,
8
5

0
,
2

2
,
0
5

3
,
8
5

3
,
8
5

3
,
8
5

3
,
3

3
,
3

2
,
0
5

?
2
,
0
5

?
2
,
0
5

2
,
0
5

α
5

α
6

2
,
0
5

2
,
0
5

2
,
0
5

2
,
0
5

?
0
,
2

3
,
8
5

2
,
0
5

0
,
2

0
,
2

0
,
2

3
,
3

3
,
3

3
,
8
5

?
3
,
8
5

?
0
,
2

0
,
2

α
7

2
,
0
5

2
,
0
5

2
,
0
5

2
,
0
5

?
3
,
8
5

0
,
2

2
,
0
5

3
,
8
5

3
,
8
5

3
,
8
5

3
,
3

3
,
3

2
,
0
5

?
2
,
0
5

?
2
,
0
5

2
,
0
5

α
8

2
,
0
5

2
,
0
5

2
,
0
5

2
,
0
5

?
3
,
8
5

0
,
2

2
,
0
5

3
,
8
5

3
,
8
5

3
,
8
5

3
,
3

3
,
3

2
,
0
5

?
2
,
0
5

?
2
,
0
5

2
,
0
5

α
9

2
,
0
5

2
,
0
5

2
,
0
5

2
,
0
5

?
0
,
2

3
,
8
5

2
,
0
5

0
,
2

0
,
2

0
,
2

3
,
3

3
,
3

3
,
8
5

?
3
,
8
5

?
0
,
2

0
,
2

α
1
0

2
,
0
5

2
,
0
5

2
,
0
5

2
,
0
5

?
0
,
2

3
,
8
5

2
,
0
5

0
,
2

0
,
2

0
,
2

3
,
3

3
,
3

3
,
8
5

?
3
,
8
5

?
0
,
2

0
,
2

α
1
1

2
,
0
5

2
,
0
5

2
,
0
5

2
,
0
5

?
0
,
2

3
,
8
5

2
,
0
5

0
,
2

0
,
2

0
,
2

3
,
3

3
,
3

3
,
8
5

?
3
,
8
5

?
0
,
2

0
,
2

α
1
2

2
2

2
2

?
3
,
3

3
,
3

2
0
,
2

0
,
2

0
,
2

0
,
6

0
,
6

2
?

2
?

3
,
3

3
,
3

α
1
3

2
2

2
2

?
3
,
3

3
,
3

2
0
,
2

0
,
2

0
,
2

0
,
6

0
,
6

2
?

2
?

3
,
3

3
,
3

α
1
4

0
,
4

0
,
4

0
,
4

0
,
4

?
2
,
0
5

2
,
0
5

0
,
4

2
,
0
5

2
,
0
5

2
,
0
5

2
2

0
,
4

?
0
,
4

?
2
,
0
5

2
,
0
5

α
1
5

α
1
6

2
,
0
5

2
,
0
5

2
,
0
5

2
,
0
5

?
0
,
2

3
,
8
5

2
,
0
5

0
,
2

0
,
2

0
,
2

3
,
3

3
,
3

3
,
8
5

?
3
,
8
5

?
0
,
2

0
,
2

α
1
7

α
1
8

2
,
0
5

2
,
0
5

2
,
0
5

2
,
0
5

?
3
,
8
5

0
,
2

2
,
0
5

3
,
8
5

3
,
8
5

3
,
8
5

3
,
3

3
,
3

2
,
0
5

?
2
,
0
5

?
2
,
0
5

2
,
0
5

α
1
9

2
,
0
5

2
,
0
5

2
,
0
5

2
,
0
5

?
3
,
8
5

0
,
2

2
,
0
5

3
,
8
5

3
,
8
5

3
,
8
5

3
,
3

3
,
3

2
,
0
5

?
2
,
0
5

?
2
,
0
5

2
,
0
5


