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Abstract

Over the past years, statistical and Bayesian approaches have become increasingly appreciated
to address the long-standing problem of computational RNA structure prediction. Recently, a novel
probabilistic method towards the prediction of RNA secondary structures from a single sequence
has been studied which is based on generating statistically representative and reproducible samples
of the entire ensemble of feasible structures for a particular input sequence. This method actually
samples the possible foldings from a distribution implied by a sophisticated (traditional or length-
dependent) stochastic context-free grammar (SCFG) that mirrors the standard thermodynamic model
applied in modern physics-based prediction algorithms. Specifically, that grammar represents an
exact probabilistic counterpart to the energy model underlying the Sfold software, which employs on
a sampling extension of the partition function (PF) approach to produce statistically representative
subsets of the Boltzmann-weighted ensemble. Although both sampling approaches have the same
worst-case time and space complexities, it has been indicated that they differ in performance (both
with respect to prediction accuracy and quality of generated samples), where neither of these two
competing approaches generally outperforms the other.

In this work, we will consider the SCFG based approach in order to perform an analysis on how the
quality of generated sample sets and the corresponding prediction accuracy changes when different
degrees of disturbances are incorporated into the needed sampling probabilities. This is motivated
by the fact that if the results prove to behave resistant even with respect to large errors on the
distinct sampling probabilities (compared to the exact ones), then it seems adequate to believe that
these probabilities do not need to be computed in an exact way, but it may efficiently suffice to only
approximate them. Thus, it might then be possible to decrease the worst-case time requirements of
such an SCFG based sampling method without significant accuracy losses. If, on the other hand, the
quality of sampled structures can be observed to strongly react on slight disturbances already, then
there is little hope for improving the complexity by corresponding heuristic procedures.

1 Introduction

In computational structural biology, a well-established probabilistic methodology towards single sequence
RNA secondary structure prediction is based on modeling secondary structures by stochastic context-
free grammars (SCFGs). In a sense, SCFGs can be seen as a generalization of hidden Markov models
(HMMs), which are widely and successfully used in the large field of bioinformatics. Briefly, SCFGs
extend on traditional context-free grammars (CFGs) by additionally defining a (non-uniform) probability
distribution on the generated structure class which is induced by the grammar parameters that can easily
be derived from a given database of sample structures via maximum likelihood techniques. Notably,
different SCFG designs can be used to model the same class of structures, where flexibility in model design
comes from the fact that basically all distinct substructures can be distinguished and with increasing
number of distinguished features, the resulting SCFG gains in both explicitness and complexity, which
may result in a more realistic distribution on the modeled structure class.
Actually, by applying SCFGs for RNA structure prediction, the main focus of attention is laid on the
typical structural composition that can be observed from a database of trusted secondary structures with
annotated sequences. Hence, a SCFG model can easily be suited for a specific RNA type (given by the
training data), but the performance of the corresponding prediction algorithms is strongly dependent on
the availability of a rich training set. Traditionally, SCFG based prediction approaches are realized by
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dynamic programming algorithms (DPAs) that require O(n3) time and O(n2) storage for identifying the
most probable folding for an input sequence of length n. Examples for successful applications of several
lightweight (i.e. small and simple) SCFGs for RNA secondary structure prediction can be found in [DE04]
and a popular SCFG based prediction tool is for instance given by the Pfold software [KH99, KH03].

However, for a very long time, the free energy minimization (MFE) paradigm has been the most common
technique for predicting the secondary structure of a given RNA sequence. The respective methods are
traditionally realized by DPAs that employ a particular thermodynamic model for the derivation of the
corresponding recursions. They basically require O(n3) time and O(n2) storage for identifying a set of
candidate structures for an input sequence of length n. In fact, while early methods, like [NPGK78,
NJ80, ZS81], computed only one structure (the MFE structure of the molecule), several more elaborate
MFE based DPAs have been developed over the years for generating a set of suboptimal foldings (see,
e.g., [WFHS99, Zuk89]). Some implementations are considered state-of-the-art tools for computational
structure prediction from a single sequence, for instance the Mfold software [Zuk89, Zuk03] or the Vienna
package [HFS+94, Hof03].
One major drawback of these MFE approaches is that they generally build on the standard Turner energy
model [XSB+98, MSZT99], which still contains many imprecisions and uses the same experimentally
derived parameters for all RNA types. Hence, their performance is strongly dependent on and thus
limited by the applied thermodynamic model. Moreover, in the traceback steps of the corresponding
DPAs, base pairs are successively generated according to the energy minimization principle, such that
the predicted set of suboptimal foldings often contains many structures that are not significantly different
(that have the same or very similar shapes and contain mostly the same actual base pairings).
To overcome these problems, several statistical sampling methods and clustering techniques have been
invented over the last years that are based on the partition function (PF) approach for computing base
pair probabilities as introduced in [McC90]. Briefly, these methods produce a statistical sample of the
thermodynamic ensemble of suboptimal foldings and rely on a statistical representation of the Boltzmann-
weighted ensemble of structures for a given sequence [DL03]. They are implemented in the widely used
Sfold package [DCL04].

In fact, over the past years, statistical approaches to RNA secondary structure prediction have become an
attractive alternative to the standard energy-based approach (which basically relies on several thousand
experimentally-determined energy parameters). In principle, many of these approaches – in contrast
to Sfold – rely on (thermodynamic) parameters estimated from growing databases of structural RNAs.
For instance, the CONTRAfold tool [DWB06] is based on a discriminative statistical method and uses
a simplified Mfold-like scoring scheme for the underlying conditional log-linear model (CLLM). Briefly,
CLLMs are flexible discriminative probabilistic models that generalize upon more intuitive generative
probabilistic models (like vanilla SCFGs or HMMs), where any SCFG has an equivalent representation as
an appropriately parameterized CLLM. The prime advantage of using discriminate instead of generative
training is that more complex scoring schemes can be considered, whereas generative models are gener-
ally easier to train an use. Nevertheless, CONTRAfold in many cases manages to provide the highest
single sequence prediction accuracy to date and eventually closes the performance gap between the best
thermodynamic methods and the best (lightweight) SCFGs.
Notably, statistical methods for RNA folding have previously been chosen to be either purely physics-
based (e.g., Sfold) or discriminative and implementing a thermodynamic model (e.g., CONTRAfold), not
generative. This might have been due to the misconception that SCFGs could not easily be constructed to
mirror energy-based models (as mentioned e.g. in [DWB06]), although it has been demonstrated lately
that this is actually possible (see, e.g. [NS11]). In fact, a generative statistical method for predicting
RNA secondary structure has recently been proposed [NSar]. This method builds on a novel probabilistic
sampling approach for generating random candidate structures for a given input sequence that is based on
a sophisticated SCFG design. Basically, it generates a statistical sample of possible foldings for the given
sequence that is guaranteed to be representative with respect to the corresponding ensemble distribution
implied by the parameters of the underlying SCFG. Particularly, conditional sampling probabilities for
randomly creating unpaired bases and base pairs on actual sequence fragments are considered that are
calculated by using only the grammar parameters and the corresponding inside and outside probabilities
for the sequence. As the underlying elaborate SCFG mirrors the thermodynamic model employed in the
Sfold software, this sampling algorithm represents a probabilistic counterpart to the sampling extension
of the PF approach (as implemented in Sfold). In fact, the sole difference is that it incorporates only
comprehensive structural features and additional information obtained from trusted databases of real-
world RNA structures instead of the recent thermodynamic parameters.
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Lately, in an attempt to improve the quality of generated sample sets, this probabilistic sampling approach
has been extended to being capable of additionally incorporating length-dependencies [SN]. In particular,
the employed (heavyweight) SCFG has been transformed into a corresponding length-dependent stochastic
context-free grammar (LSCFG) and parts of the respective procedures have been modified accordingly (in
order to deal with this grammar extension). LSCFGs have been formally introduced in [WN11], where
the main difference to conventional SCFGs is that the lengths of generated substructures are taken into
account when learning the grammar parameters, yielding a more explicit structure model induced by the
resulting length-dependent probabilistic parameters. Note that in connection with problems related to
RNA structure, the idea of considering computational methods that actually depend on the lengths of
particular substructures is not only motivated by biological aspects but has also been discussed or applied
by other authors (see, e.g., [Mai07, NE07]).

It remains to mention that although all three sampling approaches (PF, SCFG and LSCFG based variants)
need O(n3) time and O(n2) storage for the generation of a statistically representative sample for an input
sequence of length n, they obviously use different ways to define a distribution on the ensemble of all
feasible secondary structures for the sequence. Applications to structure prediction (with respect to
sensitivity and PPV, as well as to the shapes of sampled structures and predictions) showed that none
of these sampling variants generally yields the most realistic results. Actually, which one of them should
be preferred seems to strongly depend on the RNA type of the input sequence, but most importantly
on the quality of a corresponding training set and on the performance of the thermodynamic model on
such RNAs. However, if the worst-case complexity of one of these variants could be improved without
significant losses in sampling quality (that is, if any of them required less time or space than the others
while it sacrificed only little predictive accuracy), then the corresponding method would be undoubtably
the number one choice for RNA structure prediction, outperforming most if not all computational tools
for predicting the secondary structure of a single sequence.
For these reasons, the main objective of this paper is given as follows: We will consider the (L)SCFG based
statistical sampling approach from [NSar, SN] in order to perform a comprehensive experimental analysis
on the influence of disturbances (in the considered conditional sampling distributions) on the quality of
generated sample sets. Particularly, we want to explore to what extend the quality of produced secondary
structure samples for a given input sequence and the corresponding predictive accuracy decreases when
different degrees of disturbances are incorporated into the needed sampling probabilities. Note that
some exemplary intuitive first results and corresponding observations have already been presented and
discussed in [NS], where it is strongly suggested that a much more meaningful evaluation based on more
substantial results (with respect to several reasonable applications that are of great interest in connection
with sampling approaches) is needed to be able to draw reliable conclusions.
Actually, the prime motivation for such a disturbance analysis lies in the following facts: Suppose both
the samples and predictive results are observed to behave rather resistant even with respect to large
errors in the distinct sampling probabilities (compared to the exact values). Then it seems adequate
to believe that the sampling procedure does not have to calculate these probabilities in the exact way,
but it may efficiently suffice if they are only (adequately) approximated. Thus, in this case it might
obviously be possible to employ an approximation algorithm (or at least a heuristic method) for sampling
probability calculations in order to decrease the worst-case time (and maybe also space) requirements.
Furthermore, to ensure that the quality of the generated sample sets remains sufficiently high, analysis
results on the effects of different disturbance levels and types should be taken into account for the devel-
opment of an appropriate approximation scheme (or heuristic). From the other perspective, suppose the
quality of sampled structures seems to strongly react on rather slight disturbances already. In that case,
there is obviously little hope that the the worst-case complexities of the sampling method can be im-
proved by finding a suitable heuristic procedure for the computation of the needed sampling probabilities.

The rest of this paper is organized as follows: Section 2 introduces the formal framework, including
the (L)SCFG model, definitions of various types and levels of disturbances and a corresponding recursive
sampling strategy that will be considered within this article. A comprehensive disturbance analysis based
on exemplary RNA data and the corresponding results will follow in Section 3, where both the quality of
generated sample sets and their applicability to the problem of RNA structure prediction are investigated.
Notably, we not only compare different ways for extracting predictions from generated samples in order
to assess the predictive accuracy, but also present results on an the abstraction level of shapes that is of
great interest and relevance for biologists. Finally, Section 4 concludes the paper.
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2 Preliminaries

In this section, we provide all needed information and introduce the formal framework that will be used in
the sequel. We start by a recap of the relevant details of the probabilistic sampling method from [NSar, SN]
and proceed with formally defining how a number of different types and levels of disturbances can be
incorporated into the corresponding (L)SCFG based statistical sampling variants. Last but not least, we
present a modified version of the employed sampling strategy that (contrary to the original one) manages
to deal with disturbed ensemble distributions.
Note that we assume the reader to be familiar with the notions and basic concepts regarding SCFGs. A
fundamental introduction on stochastic context-free languages can be found in [HF71]. Moreover, since
for the understanding of this paper, no additional information on length-dependent stochastic models is
needed, we refer to [WN11] for details.

2.1 Sampling Based on (L)SCFG Model

In general, probabilistic sampling based on a suitable (L)SCFG has two basic steps: The first step
(preprocessing) computes the inside and outside probabilities for all substrings of a given input sequence
based on the considered (L)SCFG model. The second step (structure generation) takes the form of a
recursive sampling algorithm to randomly draw a complete secondary structure by consecutively sampling
substructures (defined by base pairs and unpaired bases) according to conditional sampling probabilities
for particular sequence fragments that strongly depend on the inside and outside values derived in step
one.

2.1.1 Step One – Preprocessing

According to the traditional DPA approach for predicting RNA structure via (L)SCFGs, a particular un-
derlying grammar, say Gr, must be constructed to generate all possible RNA sequences of any length (i.e.,
the language Lr of all non-empty strings over the alphabet ΣGr := {A,C,G,U}), where any derivation
tree for a particular sequence r ∈ Lr corresponds to one of the feasible secondary structures (according
to certain structural constraints like for instance to absence of pseudoknots, as well as with respect to
preliminary defined rules for base-pairing) for r. This means any such (inevitably ambiguous) grammar
Gr basically relies on an appropriately designed (typically unambiguous) grammar Gs modeling the cor-
responding secondary structures (i.e., the language Ls of all corresponding words over ΣGs := {(((, ))), ◦◦◦},
where ((( ))) and ◦◦◦ represents any of the possible base pairs and unpaired bases, respectively, see [VC85]).
For our investigations, we decided to rely on a rather elaborate (L)SCFG design, namely the exact for-
mal language counterpart to the thermodynamic model applied in the Sfold program, which is given as
follows:

Definition 2.1 ([NSar, SN]). The (length-dependent) SCFG Gs generating exactly all secondary struc-
tures is given by Gs = (IGs ,ΣGs ,RGs , S), where IGs = {S, T, C,A, P, L, F,H,G,B,M,O,N,U, Z}, ΣGs =
{(((, ))), ◦◦◦} and for mh := minHL ≥ 1 and ms := minhel ≥ 1, RGs contains exactly the following rules:

p1 : S → T,  initiate exterior loop

p2 : T → C, p3 : T → A, p4 : T → CA, p5 : T → AT, p6 : T → CAT,  shape of exterior loop

p7 : C → ZC, p8 : C → Z,  strands in exterior loop

p9 : A→ (((msL)))ms ,  initiate helix

p10 : P → (((L))),  extend helix

p11 : L→ F, p12 : L→ P, p13 : L→ G, p14 : L→M,  initiate any loop

p15 : F → Zmh−1H,  start hairpin loop

p16 : H → ZH, p17 : H → Z,  extend hairpin loop

p18 : G→ BA, p19 : G→ AB, p20 : G→ BAB,  shape of bulge/interior loop

p21 : B → ZB, p22 : B → Z,  strands in bulge/interior loop

p23 : M → UAO,  first substructure of multiple loop

p24 : O → UAN,  second substructure of multiple loop

p25 : N → UAN, p26 : N → U,  kth substructure of multiple loop, k ≥ 3
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p27 : U → ZU, p28 : U → ε,  strands in multiple loop

p29 : Z → ◦◦◦ .  unpaired base

Note that Gs has been parameterized to impose two relevant restrictions on the class of all feasible
structures: first, a minimum length of minHL for hairpin loops and second, a minimum number of
minhel consecutive base pairs for helices, where common choices are minHL ∈ {1, 3} and minhel ∈ {1, 2}.
However, within this work we will only consider minHL = minhel = 1, which corresponds to the least
restrictive (yet also most unrealistic) choice and usually yields the worst sampling results (see [NSar, SN]).
Moreover, the needed grammar parameters (trained on a suitable RNA structure database) are splitted
into a set of transition probabilities Prtr(rule) for rule ∈ IGs and two sets of emission probabilities
Prem(rx) for rx ∈ ΣGr and Prem(rx1

rx2
) for rx1

rx2
∈ Σ2

Gr , i.e. for the 4 unpaired bases and the 16 possible
base pairings, respectively. It should be mentioned that in the length-dependent case, these probabilities
depend on the length of the subwords generated, meaning we then have to use Prtr(rule, len = len(rule)),
where len(rule) denotes the length of a specific application of rule in a parse tree, which is defined as
the length of the (terminal) subword eventually generated from rule. Accordingly, we need to consider
Prem(rx, len = 1) and Prem(rx1rx2 , len = x2 − x1 + 1), respectively. Note that for the sake of simplicity,
we will omit the length (second parameter) in the sequel, hence using the same notations in either case
(length-dependent or not).
However, according to [NSar, SN], the computation of all inside probabilities

αX(i, j) := Pr(X ⇒∗lm ri . . . rj) (1)

and all outside probabilities

βX(i, j) := Pr(S ⇒∗lm r1 . . . ri−1 X rj+1 . . . rn) (2)

for a sequence r of size n, X ∈ IGs and 1 ≤ i, j ≤ n, can be done with a special variant of an Earley-style
parser (such that the considered grammar does not need to be in Chomsky normal form (CNF)). Notably,
both sampling variants (length-dependent or not) can be implemented to require O(n3) time and O(n2)
memory for this preprocessing step.

2.1.2 Step Two – Random Structure Generation

Once the preprocessing is finished, different strategies may be employed for realizing the recursive sam-
pling step. In general, for any sampling decision (for example choice of a new base pair), a particular
strategy relies on the respective set of all possible choices that might actually be formed on the currently
considered fragment of the input sequence. Any of these sets contains exactly the mutually exclusive and
exhaustive cases as defined by the alternative productions (of a particular intermediate symbol) of the
underlying grammar. The corresponding random choice is then drawn according to the resulting condi-
tional sampling distribution (for the considered sequence fragment). This means the respective sampling
distributions are defined by the inside and outside values derived in step one (providing information on the
distribution of all possible choices according to the actual input sequence) and the grammar parameters
(transition probabilities).
In this work, we will only consider the well-established strategy from [NSar, SN], which is also imple-
mented in the corresponding second step of the physics-based sampling algorithm underlying the popular
Sfold tool. Basically, a secondary structure is sampled recursively by starting with the entire RNA
sequence and consecutively computing the adjacent substructures (single-stranded regions and paired
substructures) of the exterior loop (from left to right), where any paired substructure is completed by
successively folding other loops. In fact, the base pairs and unpaired base(s) are successively sampled
according to conditional probability distributions for the considered fragment, given a partially formed
structure.

For example, suppose fragment Ri,j := ri . . . rj of input sequence r, 1 ≤ i, j ≤ n = |r|, is to be folded,
where it is known that the resulting substructure on Ri,j must correspond to a (valid) derivation of a
particular intermediate symbol X ∈ IGs (according to the partially formed structure). Then, the strategy
considers the corresponding set acX(i, j) of all choices for (valid) derivations of X on Ri,j , which actually
correspond to all possible substructures on Ri,j (the mutually exclusive and exhaustive cases for X on
Ri,j). Under the assumption that the alternatives for intermediate symbol X are equal to X → Y and
X → VW , this set is defined as follows:

acX(i, j) := acXY (i, j) ∪ acXVW (i, j), (3)
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where

acXY (i, j) := {prob | prob = βX(i, j) · αY (i, j) · Prtr(X → Y ) 6= 0}
= {βX(i, j) · prob | βX(i, j) 6= 0 and prob = αY (i, j) · Prtr(X → Y ) 6= 0}

and

acXVW (i, j) := {{k, prob} | i ≤ k ≤ j and prob = βX(i, j) · αV (i, k) · αW (k + 1, j) · Prtr(X → VW ) 6= 0}
= {{k, βX(i, j) · prob} | i ≤ k ≤ j and βX(i, j) 6= 0 and

prob = αV (i, k) · αW (k + 1, j) · Prtr(X → VW ) 6= 0}.
Consequently, we have to sample from the corresponding conditional probability distribution induced by
acX(i, j), that is the random choice is drawn according to the following set of sampling probabilities:{

prob

norm
| prob ∈ acXY (i, j) or {k, prob} ∈ acXVW (i, j)

}
, (4)

where obviously, ∑
prob∈acXY (i,j)

prob

norm
+

∑
{k,prob}∈acXVW (i,j)

prob

norm
= 1 (5)

must hold, which can in general easily be guaranteed by using norm = βX(i, j) · αX(i, j). However, if
there may occur inconstancies in the distribution induced by the underlying grammar model (for example
if a particular implementation faces problems that arise from numerical imprecisions or if the distribution
has been deliberately disturbed as we intend to do in the sequel), we should instead use

norm =
∑

prob∈acXY (i,j)

prob+
∑

{k,prob}∈acXVW (i,j)

prob

= βX(i, j) ·

 ∑
βX(i,j)·prob∈acXY (i,j)

prob+
∑

{k,βX(i,j)·prob}∈acXVW (i,j)

prob


= βX(i, j) ·

αY (i, j) · Prtr(X → Y ) +
∑
i≤k≤j

αV (i, k) · αW (k + 1, j) · Prtr(X → VW )


= βX(i, j) · normα,

which then ensures that the corresponding sampling probabilities still sum up to unity, such that they
indeed define a conditional probability distribution).
Note that the sampling strategy effectively works conform with the SCFG model, which means that it
actually samples one of the possible parse tress of the given input sequence by randomly drawing one
of the respective mutually exclusive and exhaustive cases (corresponding to the distinct grammar rules
with same premise) at any point in the already partially constructed parse tree in order to generate one
of the possible subtrees for the given input sequence (corresponding to one the possible substructures on
the considered sequence fragment, which is currently being folded recursively).
Hence, according to the sampling process, we could have never gotten to a point where we have to consider
all mutually exclusive and exhaustive cases for a particular premise X ∈ IGs on an actual sequence
fragment Ri,j , 1 ≤ i, j ≤ n, if the grammar could not derive the sentential form r1 . . . ri−1Xrj+1 . . . rn
from the start symbol (axiom) S ∈ IGs , that is if the outside value βX(i, j) would be equal to 0. This
in fact means that the respective probability distribution (conditioned on the considered fragment Ri,j)
from which the strategy randomly samples one of the possible substructures (one valid subtree of the
already partially constructed parse tree) is not influenced by the corresponding outside probability, due
to the fact that βX(i, j) > 0 indeed only represents a scaling factor common to all sampling probabilities
for the relevant mutually exclusive and exhaustive cases. For this reason, we can obviously without loss
of information remove the outside values from the definitions of the needed sampling probabilities.
The correctness of this simplification can easily be formally proven by considering the above defined
set acX(i, j) of all choices for possible derivations of intermediate symbol X on sequence fragment Ri,j .
In fact, the sampling strategy randomly draws one of the elements from acX(i, j) according to the
corresponding distribution induced by normalizing the probabilities of the elements in acX(i, j) such
that they sum up to unity. Particularly, we have

1 =
∑

βX(i,j)·prob∈acXY (i,j)

βX(i, j) · prob
βX(i, j) · normα

+
∑

{k,βX(i,j)·prob}∈acXVW (i,j)

βX(i, j) · prob
βX(i, j) · normα
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=
1

normα
·

 ∑
βX(i,j)·prob∈acXY (i,j)

prob+
∑

{k,βX(i,j)·prob}∈acXVW (i,j)

prob


=

1

normα
·

 ∑
prob∈acXY (i,j)

prob

βX(i, j)
+

∑
{k,prob}∈acXVW (i,j)

prob

βX(i, j)

 ,

since βX(i, j) 6= 0 holds (due to the definitions of acXY (i, j) and acXVW (i, j)).

Formal definitions of all corresponding sets acX(i, j), X ∈ IGs and 1 ≤ i, j ≤ n, that are considered by
the recursive sampling strategy for any input sequence of length n, including formulae for deriving the
respective conditional sampling probabilities, can be found in Section Sm-I1. Notably, all those formulae
only depend on some of the parameters of the underlying (L)SCFG model and the corresponding inside
values, such that after a preprocessing of the given sequence (which includes the complete inside compu-
tation and needs O(n3) time in the worst-case), a random candidate structure can be generated in O(n2)
time.

2.2 Considered Disturbance Types and Levels

Obviously, under the assumption of a particular (L)SCFG model (trained beforehand on arbitrary RNA
data), the most straightforward way for improving the performance of the corresponding overall sampling
algorithm seems to be by reducing the worst-case complexity of the inside calculations. Therefore, we
decided to quantify to which extend the algorithm reacts to different types and degrees of disturbances
incorporated into the considered inside probabilities in order the get evidence if it could actually be
possible to find a corresponding approximation algorithm (or at least an appropriate heuristic method)
that eventually requires less time but causes only acceptable losses in accuracy. In fact, with respect to
developing a suitable heuristic method to be applied in practice, it is necessary to know about the effects
of different disturbance levels and types to get an idea on how precisely the respective values need to be
approximated in order to guarantee sufficiently good results and to find out which types of errors pose
fundamental problems and which ones are negligible.
For these reasons, given an arbitrary input sequence r of length n, we decided to consider (more or less)
skewed inside probabilities2

α̂X(i, j) := max(min(αX(i, j) + αerrX (i, j), 1), 0), (6)

for X ∈ IGs and 1 ≤ i, j ≤ n, rather than the corresponding correct values αX(i, j) (obtained in
the preprocessing step for r) for defining the needed sampling probabilities. More precisely, we want
to incorporate different stages of (more or less grave) randomly chosen errors into particular inside
values for the given sequence, that is into preliminary chosen subsets of the set of all precomputed
inside probabilities αX(i, j), X ∈ IGs and 1 ≤ i, j ≤ n. Note that is actually suffices to consider
X ∈ IαGs := {T,C,A, P, F,G,B,M,O,N,U} ⊂ IGs , since only those intermediate symbols are needed for
defining the diverse sampling probabilities that are used by the employed sampling strategy for obtaining
the distinct conditional distributions for drawing particular random choices.
However, to reach our previously declared goal, we decided to draw αerrX (i, j) (uniformly) at random from
either of the following sets:

funcwin,opI (prob) :=


Interval(func), if X ∈ I ⊆ IαGs and [(j − i+ 1 > win and op = +) or

(j − i+ 1 ≤ win and op = −)],

{0}, else,

(7)

such that only inside values of particularly chosen intermediate symbols that lie outside (op = +) or
within (op = −) a considered window of preliminary fixed size are actually disturbed, that is only for
those values α̂X(i, j) 6= αX(i, j) might result. Note that in the sequel, we will basically consider either

funcwin,op(prob) := funcwin,opIαGs
(prob) (8)

1All references starting with Sm are references to the supplementary material available at
http:///wwwagak.cs.uni-kl.de/publications/.

2Note that the function max(min(x, 1), 0) = min(max(x, 0), 1) ensures that the resulting value is still a probability, i.e. a
real value from [0, 1].

7



(i.e., disturbances only inside or outside fix-sized window, but for all intermediate symbols),

funcI(prob) := funcn,+I (prob) = func−1,−I (prob) (9)

(i.e., errors for all subword lengths, but only for particular intermediate symbols), or simply

func(prob) := funcn,+IαGs
(prob) = func−1,−IαGs

(prob) (10)

(i.e., disturbances on all considered inside values).
Moreover, func ∈ {mep, fep,mev, fev} denotes the actual disturbance type. Principally, we distinguish
between two degrees of errors: relative and absolute ones. To generate relative errors, we might either
use func = mep (which stands for maximum allowed error percentage, with respect to the corresponding
correct value) or func = fep (for fixed error percentage, which is ought to force greater and hence more
severe random errors). Formally, this means that either

Interval(mep) := [−prob · αX(i, j),+prob · αX(i, j)] (11)

or
Interval(fep) := {−prob · αX(i, j),+prob · αX(i, j)} (12)

might be employed for randomly drawing a relative error αerrX (i, j), where prob ∈ (0, 1] indeed defines the
desired percentage. In order to randomly choose an absolute error αerrX (i, j) for obtaining a (potentially)
disturbed probability α̂X(i, j), we might equivalently consider either

Interval(mev) := [−prob,+prob] (13)

or
Interval(fev) := {−prob,+prob}, (14)

with prob ∈ (0, 1] being a preliminary fixed value. This means we may use func = mev (which stands
for maximum allowed error value, independent on the corresponding correct value) and func = fev (for
fixed error value, usually resulting in more grave disturbances) for causing absolute disturbances.
Note that random errors on all outside probabilities βX(i, j), X ∈ IGs and 1 ≤ i, j ≤ n, could be generated
in basically the same way, but since those values can be deliberately excluded from the definition of
sampling probabilities (according to the employed sampling strategy), this is obviously not necessary for
the subsequent investigations.
Finally, it should be clear that for func ∈ {mep, fep} (resulting in relative errors), only the magnitudes
of the corresponding sampling probabilities (with respect to the implied skewed conditional sampling
distributions) change, such that the exact same structures are possible as in the undisturbed case. Hence,
we might expect that only the consideration of sufficiently large percentages prob ∈ (0, 1] for generating
errors according to funcwin,opI (prob) can cause an actual shifting in the ensemble distribution, resulting

in significant quality losses. The contrary holds for absolute errors created according to funcwin,opI (prob)
with func ∈ {mev, fev}. In fact, since the (cardinalities of the) respective sets of relevant sampling
choices implied by the skewed ensemble distribution generally differ (to a more or less severe extent) from
the corresponding exact ones, it must be expected that only rather small fixed error values of prob ∈ (0, 1]
are reasonable choices for our purpose. However, since for distinct subword lengths j− i+1, 1 ≤ i, j ≤ n,
the corresponding probabilities αX(i, j) for any X ∈ IαGs usually imply different orders of magnitudes3,
it seems practically impossible to tell how to find an appropriate fixed error value for creating absolute
disturbances.

2.3 Resulting Modified Sampling Strategy

It should be clear that after the desired errors (according to any of the previously specified variants of
either mep, fep,mev or fev) have been incorporated into the precomputed exact inside (and outside) values
for a given sequence, the needed conditional sampling distributions (as considered by a particular strategy)
are induced by the exact grammar parameters and the disturbed inside (and outside) probabilities for
that sequence. This, however, might create the need to (slightly) modify the respective particularly
employed sampling strategy such that it finally gets capable to deal with these skewed distributions.
As for this work, consider the previously sketched recursive sampling strategy from [NSar, SN]. Without
any errors in the conditional probability distributions (i.e. by using the exact probabilistic parameters for

3In general, longer words tend to be generated with smaller probability since we have to apply more grammar rules, each
implying a factor (typically) less than 1 to the probability.
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the given input sequence, particularly the corresponding inside values), it always successfully generates
the sampled loop type for a considered sequence fragment. For example, suppose the sampling procedure
decides that base pair ri.rj should close a multiloop, then the sequence fragment Ri+1,j−1 := ri+1 . . . rj−1
is guaranteed to be folded into an admissible multiloop that by definition contains at least two helical
regions radiating out from this loop. However, by using disturbed sampling probabilities (given by the
exact parameters of the underlying (L)SCFG model and disturbed inside values for input sequence r,
derived by incorporating any sort of errors), the sampling algorithm may choose to form a particular
substructure on the fragment Ri+1,j−1, although this would actually not be possible.
Therefore, we had to slightly modify the sampling procedure such that in any case where the chosen
substructure type can not be successfully generated, it settles for the partially formed substructure.
That is, it either leaves the complete fragment unpaired (if the desired base pairs could not be sampled
at all), or else it for example only creates a bulge/interior loop although a multiloop should have been
constructed (but only one helix has been successfully sampled). The resulting modified versions of the
distinct sampling steps (in pseudocode) are given in Section Sm-I, Figure 1 gives a schematic overview of
the overall sampling process.
Note that alternatively, the algorithm could have been modified to revise any decisions that lead to
incompletely generated substructures, resulting in some sort of backtracking procedures that obviously
would have to be applied in order to sample more realistic overall structures for a given RNA sequence.
However, as this effectively results in much more complex modifications and eventually yields significant
losses in performance, we opted for the simpler and more straightforward first variant to get rid of the
described problem.

3 Analysis of the Influence of Disturbances

The aim of this section is to perform a comprehensive experimental analysis on the influence of distur-
bances (in the ensemble distribution for a given input sequence) on the quality of sample sets generated
by the (L)SCFG based statistical sampling approach from [NSar, SN]. In fact, we want to explore to
what extend the quality of produced secondary structure samples for a given input sequence and the
corresponding predictive accuracy decreases when different degrees of errors are incorporated into the
needed sampling probabilities.

3.1 RNA Structure Data

For our examinations, we decided to consider different sets of trusted RNA secondary structure data
for which the (L)SCFG based sampling approach yields good quality results when no disturbances are
included in the respective sampling distributions for a given sequence. Therefore, we took the same
tRNA database (of 2163 distinct tRNA structures with lengths in [64, 93] and about 76 on average,
derived from [SHB+98]) and the identical 5S rRNA data set (of 1149 distinct sequences with lengths in
[102, 135] and about 119 on average, retrieved from [SBEB02]) as collected in [NSar]. These two rich
data sets of trusted RNA secondary structures will be exclusively used as the basis for the following
applications, such that the results can easily be opposed to the corresponding ones presented in [SN].

3.2 Probability Profiling for Specific Loop Types

A statistical sample of all possible secondary structures for a given RNA sequence can be used for sampling
estimates of the probabilities of any structural motifs. Actually, probability profiling for unpaired bases
within particular loop types can easily be applied for this purpose. In principle, for each nucleotide
position i, 1 ≤ i ≤ n, of a given sequence of length n, one computes the probabilities that i is an unpaired
base within a specific loop type. These probabilities are given by the observed frequencies in a random
sample set.
Since this application is rather intuitive, we decided to use it as a starting point for our disturbance
analysis. Particularly, we derived a number of statistical samples for the well-known Escherichia coli
tRNAAla sequence by applying the sampling strategy from Section 2.3 on the basis of diverse sets of
probabilistic parameters (inside probabilities disturbed according to several particular variants as defined
in Section 2.2) for that sequence and calculated corresponding probability profiles. All relevant results are
displayed in Figures 5 to 18 of Section Sm-II. Some of the potentially most interesting ones are presented
in Figures 2 to 4.
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Figure 1: Flowchart for recursive sampling of an RNA secondary structure S1,n for a given input sequence
r of length n according to an inherently controlled strategy with predetermined order, similar to that
of [DL03, NSar]).

3.2.1 Errors on All Values

Let us first consider the profiles displayed in Figure 2 (and in Figures 5 and 6). Obviously, even if large
relative errors on all inside probabilities and hence on the needed conditional sampling probabilities are
generated, the sampled structures still exhibit the typical cloverleaf structure of tRNAs, especially for
the length-dependent sampling approach where relative disturbances seem to have no significant negative
effect on the sampling quality (see Figure 2a). However, Figure 2b perfectly demonstrates that if the
disturbances have been created by adding absolute errors to all inside values, then – even for rather small
absolute error values – the resulting samples obtained with both the SCFG and LSCFG approach are
useless.
Note that for any given input sequence, it seems to be usually much more important for the employed
sampling strategy to be able to identify which ones of the (combinatorially) possible substructures can
actually be (validly) formed on the considered sequence fragment rather than to know their exact prob-
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(a) Relative errors according to mep(prob) (thick gray lines) and fep(prob) (thick
dotted darker gray lines), considering percentage prob = 0.99.
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(b) Absolute errors according to mev(prob) (thick gray lines) and fev(prob) (thick
dotted darker gray lines), using fixed value prob = 10−9.

Figure 2: Hairpin loop profiles for E.coli tRNAAla, calculated from a random sample of 1000 structures
generated with the SCFG (figures on the left) and LSCFG (figures on the right) approach, respectively
(under the assumption of the less restrictive grammar parameters minhel = 1 and minHL = 1). The
exact (undisturbed) results are displayed by the thin black lines, and the correct hairpin loops in E.coli
tRNAAla are illustrated by the black points.
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(a) Results for traditional SCFG model.
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(b) Results for LSCFG model.

Figure 3: Hairpin loop profiles corresponding to those presented in Figure 2b, where absolute errors
were derived according to mevwin,+(prob) (thick gray lines) and fevwin,+(prob) (thick dotted darker gray
lines), respectively, with prob = 10−9 and win ∈ {15, 38, 60} (figures from left to right).

abilities (according to the conditional distribution for the respective fragment), for two contrary reasons:
First, in order to avoid drawing practically impossible choices, which later forces it to leave the considered
sequence fragment (at least partially) unpaired4. Second, for ensuring that none of the actually valid

4If those decisions are not revised by employing backtracking procedures, see the description of the modifications incor-
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(a) Results for traditional SCFG model.
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(b) Results for LSCFG model.

Figure 4: Hairpin loop profiles corresponding to those presented in Figure 2b, where absolute errors
were derived according to mevwin,−(prob) (thick gray lines) and fevwin,−(prob) (thick dotted darker gray
lines), respectively, with prob = 10−9 and win ∈ {15, 38, 60} (figures from left to right).

choices is prohibited during the folding process, such that the sampling procedure might inevitably prefer
other (potentially even impossible) substructures.
Consequently, in order to prevent a decline in accuracy of generated structures and a reduction of the
overall sampling quality, it seems to be of great importance that the sampling strategy is capable of
distinguishing between inside values and especially sampling probabilities that are equal and unequal to
zero according to the exact (undisturbed) ensemble distribution for the given input sequence. By adding
absolute errors, however, inside or sampling probabilities being equal (unequal) to zero in the exact case
might often become unequal (equal) to zero according to the resulting skewed (disturbed) distributions,
whereas by incorporating relative errors, all considered inside and sampling probabilities obviously stay
equal or unequal to zero (as in the exact case), which intuitively explains the basic observations made
from Figure 2.

3.2.2 Relevant Sampling Probabilities

Nevertheless, in order to draw more detailed conclusions, we counted and compared the relevant (i.e.,
greater than zero) inside and sampling probabilities that were considered for obtaining the profiles pre-
sented in Figure 2. The results are collected in Tables 5 and 6 of Section Sm-II.
First, it seems obvious that due to the more explicit length-dependent version of the considered grammar
parameters (length-dependently trained transition and emission probabilities), there should generally re-
sult a much smaller number of relevant inside values and sampling probabilities when applying the LSCFG
model rather than the conventional one. Tables 5 and 6 exemplarily prove this intuitive assumption. Note
that this effect might indeed be responsible for the observation that the LSCFG based sampling approach
reacts considerably less to large relative errors than the conventional length-independent variant, as indi-
cated by Figure 2a: less inside probabilities are effectively disturbed, such that the extend of the relative
errors imposed on the corresponding sampling probabilities is inevitably smaller for the LSCFG variant
than for the length-independent one.
Moreover, there are much more relevant exact inside and sampling probabilities than corresponding rel-
evant disturbed values for basically any (intermediate) symbol when considering the traditional SCFG
model, whereas for the LSCFG variant the contrary holds, that is generally way more inside and sam-
pling probabilities are relevant in the disturbed cases than in the exact case. Actually, in both cases
(length-dependent and not), the numbers of relevant disturbed inside values α̂X(i, j), 1 ≤ i, j ≤ n, are
rather similar (for basically all X ∈ IαGs), in contrast to the numbers of relevant sampling probabilities

porated into the sampling algorithm in order to deal with such situations as given in Section 2.3.
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(corresponding to valid choices for substructures) for the distinct sampling steps which are in general
to a large extend greater when using the traditional SCFG approach than under the assumption of the
corresponding LSCFG model. This behavior might be the reason for the fundamental differences in the
resulting (albeit useless) loop profiles presented in Figure 2b.
Finally, it remains to mention that under the assumption of the conventional SCFG model, it happens
that for any X ∈ IαGs , most inside values are relevant in both the exact and the disturbed case, whereas
significantly less are relevant only in the exact case and very few are only relevant in the disturbed
case (see Figure 5a). Considering the LSCFG variant, however, for any X ∈ IαGs the least inside values
are relevant only in the exact case, as indicated by Figure 5b. Obviously, this seems to be the natural
consequence of the previously formulated observations.

3.2.3 Errors Only on Particular Values

Now, in an attempt to find out in which cases particular absolute errors have a very significant (negative)
impact on the resulting sampling quality and to identify potentially existing situations where they barely
influence the output of the applied statistical sampling algorithm, we want to consider some of the more
specialized variants for generating absolute disturbances (as defined in Section 2.2). The corresponding
profiles are basically shown in Figures 3 and 4 (as well as in Figures 7 to 18).
Notably, even if absolute disturbances may only occur for inside values αX(i, j), X ∈ IαGs , with j− i+1 >
win (i.e., for substructure lengths greater than a particular fixed value win), the corresponding sampling
results are of no practical use at all (see Figure 3). In fact, there seem to be no noticeable improvements
when considering increasing values of win, which means that even if more inside values αX(i, j), X ∈ IαGs ,
namely those satisfying j−i+1 ≤ win, are guaranteed to be exact (contain no relative or absolute errors),
the resulting samples might not be expected to gain in quality. This observation is actually unfortunate
as regards the derivation of a corresponding heuristic version of the inside algorithm, since the inside
computation starts by calculating the respective values for small sequence fragments and subsequently
considers larger ones, meaning the straightforward approach of deriving all values αX(i, j), X ∈ IαGs ,
with j − i+ 1 ≤ win in the exact way and approximating only the remaining ones (i.e., using a constant
window size win for exact calculations) might not yield results of acceptable quality if absolute errors
can not be ruled out (completely).
Nevertheless, as we can see from Figure 4, if absolute disturbances may only occur for inside values
αX(i, j), X ∈ IαGs , with j − i + 1 ≤ win (i.e., for substructure lengths less than or equal to a particular
fixed value win), the corresponding sampling results might actually be of acceptable quality, but seemingly
only for rather small values of win. This means in order to obtain a practically applicable heuristic, it
seems a good idea to consider a constant (small enough) window of size win and compute all values
αX(i, j), X ∈ IαGs , with j − i + 1 > win in the exact way, thus approximating only those satisfying
j − i + 1 ≤ win. However, due to the contrary course of action of traditional inside calculations, this
approach can obviously not be realized. Consequently, this observation does not contribute to developing
an appropriate heuristic variant of the preprocessing step, but it actually motivates the construction of
an innovative sampling strategy that takes on a reverse sampling direction (that constructs substructures
in an inside-to-outside fashion, contrary to the generation of corresponding derivation trees according to
the underlying grammar).
Finally, for the sake of completeness, it should be noted that by incorporating absolute errors (for all
subword lengths) only for any of the distinct intermediate symbols X ∈ IαGs at once (i.e., by disturbing
only the inside values αX(i, j), 1 ≤ i, j ≤ n, for a particular X ∈ IαGs), we found out that some are more
sensitive with respect to disturbances in the underlying ensemble distribution than others (see Figures 11
to 18 of Section Sm-II). In principle, the strongest (negative) reactions to the influence of the generated
absolute errors were observed for symbols T , C, A, F (for the traditional SCFG model), G and U , whereas
less severe quality losses basically resulted for intermediates M , O, N and P . Moreover, for two symbols,
namely F (for the LSCFG model) and B, we recognized no noticeable impact of the caused disturbances
to the accuracy of the generated sample sets.

3.3 Prediction Accuracy – Sensitivity and PPV

In connection with sampling approaches, there exist diverse (more or less) efficient well-defined principles
for extracting a particular structure prediction from a generated set of candidate structures for a given
input sequence. In fact, under the condition that a corresponding folding can be calculated in O(n3)
time and with O(n2) storage (i.e., has the same worst-case complexities as the preprocessing step), the
statistical sampling method considered in this work can easily be applied to single sequence secondary
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structure prediction without significant losses in performance and its predictive power can easily be
measured by means of sensitivity (Sens.) and positive predictive value (PPV)5. Briefly, these two common
measures are widely used in order to quantify the accuracy of RNA secondary structure prediction
methods and are usually defined as follows (see e.g. [BBC+00]):

• Sens. is the relative frequency of correctly predicted pairs among all position pairs that are actually
paired in a stem of native foldings, whereas

• PPV is defined as the relative frequency of correctly predicted pairs among all position pairs that
were predicted to be paired with each other.

Formally, they are given by Sens. = TP · (TP +FN)−1 and PPV = TP · (TP +FP )−1, where TP is the
number of correctly predicted base pairs (true positives), FN is the number of base pairs in the native
structure that were not predicted (false negatives) and FP is the number of incorrectly predicted base
pairs (false positives).

In order to investigate to what extend the accuracy of predicted foldings changes when different dimensions
of relative disturbances are incorporated into the needed sampling probabilities, we decided to perform a
series of cross-validation experiments based on the same partitions of the tRNA and 5S rRNA databases
into 10 approximately equal-sized folds, respectively, as considered in [NSar, SN]. In particular, for
each sequence, we generated several sample sets on the basis of different relative error types and values,
where from each of the produced samples, we derived corresponding predictions according to a number
of competing reasonable selection principles and construction schemes (which can all be applied to the
respective sample set without increasing the worst-case complexity of the overall algorithm).
Briefly, we employed two different well-defined selection procedures in order to identify one particular
structure from the produced sample as prediction: First, we picked the most likely secondary structure
(i.e., the one with the highest probability among all feasible structures for the input sequence according
to the induced (L)SCFG model), in strong analogy to traditional SCFG based probabilistic structure
prediction methods. This choice will be denoted by most probable (MP) structure in the sequel. Addi-
tionally, as one of the most straightforward and reasonable choices for statistically representative samples
of the overall structure ensemble, we took the most frequently sampled folding (i.e., the one with the
highest number of occurrences among all candidate structures within the generated sample set), which
will be named most frequent (MF) structure in the sequel.
Note that if the samples are indeed representative with respect to the underlying ensemble distribution
(i.e., if a sufficiently large number of candidate foldings is randomly generated on the basis of the cor-
responding conditional probability distributions considered by the employed strategy), then these two
predictions should be rather identical in most cases, at least if no disturbances are considered (i.e., under
the condition that the exact inside probabilities are used for deriving the respective conditional sam-
pling distributions). In fact, any representative set of candidate structures for a given input sequence
obtained by (L)SCFG based statistical sampling obviously reflects the probability distribution on all fea-
sible foldings of that sequence which strongly depends on the corresponding inside probabilities. Thus,
if the preprocessed inside values contain any errors, then the MF structure of a particular statistically
representative sample set corresponds to the most likely folding of the given sequence with respect to the
skewed ensemble distribution induced by the disturbed inside values, whereas the MP structure of that
sample is indeed equal to the most likely folding (among all generated candidate structures) with respect
to the exact ensemble distribution6. Hence, the results for MP and MF structure predictions might differ
in the disturbed cases, especially as the gravity of generated disturbances grows.
However, we decided to additionally apply two different commonly used construction schemes for com-
puting a new structure as predicted folding, where the predicted structure itself must not necessarily be
contained in the given sample. Particularly, we first determined a maximum expected accuracy (MEA)
structure of the generated sample set as defined in [NSar], which maximizes the number of correctly un-
paired and paired positions with respect to the true folding and is computed on the basis of the considered
sample (rather than on the basis of the entire structure ensemble for the sequence as done for example
in the Pfold [KH03] and CONTRAfold [DWB06] programs). Furthermore, we calculated the unique
consensus structure of the produced sample, called the centroid structure, which effectively reflects the
overall behavior of the sample set and is actually formed by all base pairs that occur in more than 50% of

5Note that the positive predictive value is often called specificity, although this measure formally obeys to a slightly
different definition

6This is due to the fact that the probability of a particular folding of a given RNA sequence (i.e., the probability of
the corresponding derivation tree) depends only on the considered set of grammar parameters (transition and emission
probabilities).
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the sampled structures (for details, see e.g. [DCL05]). Note that for similar reasons as discussed above for
MF structure predictions, MEA and centroid structures obtained from statistically representative sample
sets can only reflect the skewed ensemble distribution rather than the exact one in the disturbed case.
Last but not least, we derived two different sets of so-called γt−o-MEA and γt−o-centroid structures for
the produced samples, respectively, as defined in [NSar] (in connection with sampling algorithms), where
γt−o ∈ [0,∞) is a trade-off parameter for controlling the sensitivity and PPV of the predicted foldings.
Note that the default choice γt−o = 1 serves as the neutral element with respect to the prediction, mean-
ing the prediction is neither biased towards a better sensitivity nor to a better PPV and corresponds to
the above described well-known MEA or unique centroid structure, respectively. Notably, by measuring
the performance at several different settings of γt−o (i.e. by determining the (adjusted) sensitivity and
PPV for various values of γt−o), it becomes possible to derive a corresponding receiver operating char-
acteristic (ROC) curve and to calculate the estimated area under this curve (AUC), for both the MEA
and the centroid prediction principle, respectively. This obviously allows for a much more informative
and reliable comparison of the predictive powers of the different sampling variants than considering only
the corresponding results for the default choice γt−o = 1.
However, the (unadjusted) sensitivity and PPV measures obtained by considering the four different (un-
parameterized) prediction principles sketched above are listed in Tables 7a and 8a, where a few selected
ones are presented in Table 1. The corresponding AUC values obtained by varying instances of γt−o
are all collected in Tables 7b and 8b, some of them are presented in Table 2. Note that in accordance
with [NSar, SN], we considered any value of γt−o ∈ {1.25k | −12 ≤ k ≤ −1} ∪ {2k | 0 ≤ k ≤ 12} in order
to obtain appropriate ROC curves and corresponding AUC values. Plots of some of the resulting curves
can be found in Figures 19 to 22 of Section Sm-II.

MP struct. MF struct. MEA struct. Centroid
Approach Errors

Sens. PPV Sens. PPV Sens. PPV Sens. PPV

SCFG — 0.7818 0.8437 0.7792 0.8445 0.7324 0.8939 0.6754 0.9158
mep(0.5) 0.7822 0.8447 0.7599 0.8370 0.7169 0.8927 0.6607 0.9140
mep(0.99) 0.7590 0.8388 0.6768 0.8004 0.6414 0.8877 0.5817 0.9127
fep(0.5) 0.7798 0.8440 0.7234 0.8184 0.6864 0.8896 0.6292 0.9134
fep(0.99) 0.4101 0.7295 0.2864 0.5590 0.2532 0.7776 0.2157 0.8291

LSCFG — 0.8545 0.9534 0.8542 0.9535 0.8335 0.9736 0.8250 0.9783
mep(0.5) 0.8545 0.9534 0.8429 0.9524 0.8236 0.9731 0.8150 0.9773
mep(0.99) 0.8519 0.9533 0.7988 0.9413 0.7833 0.9676 0.7735 0.9726
fep(0.5) 0.8548 0.9536 0.8224 0.9486 0.8029 0.9707 0.7940 0.9758
fep(0.99) 0.7530 0.9325 0.5769 0.8623 0.5668 0.9075 0.5567 0.9195

(a) For our tRNA database.

MP struct. MF struct. MEA struct. Centroid
Approach Errors

Sens. PPV Sens. PPV Sens. PPV Sens. PPV

SCFG — 0.4251 0.5372 0.4251 0.5363 0.3403 0.6967 0.2689 0.8044
mep(0.5) 0.4143 0.5280 0.4160 0.5290 0.3334 0.6987 0.2643 0.8051
mep(0.99) 0.3897 0.5227 0.3894 0.5216 0.2957 0.7069 0.2362 0.8072
fep(0.5) 0.4055 0.5203 0.4049 0.5198 0.3209 0.7068 0.2532 0.8087
fep(0.99) 0.2043 0.4410 0.1756 0.3788 0.1066 0.6867 0.0814 0.7666

LSCFG — 0.8993 0.9412 0.8997 0.9409 0.8959 0.9513 0.8873 0.9574
mep(0.5) 0.8993 0.9412 0.8909 0.9380 0.8903 0.9478 0.8819 0.9541
mep(0.99) 0.8989 0.9414 0.8639 0.9269 0.8659 0.9408 0.8574 0.9482
fep(0.5) 0.8993 0.9412 0.8796 0.9328 0.8798 0.9445 0.8716 0.9515
fep(0.99) 0.8251 0.9052 0.7162 0.8375 0.7148 0.8661 0.6986 0.8879

(b) For our 5S rRNA database.

Table 1: Prediction results by means of sensitivity and PPV (computed by 10-fold cross-validation
procedures, using sample size 1000 and minhel = minHL = 1).

Let us first consider the results reported in Table 1. As we can see, the PPV is principally not affected
by the different dimensions of disturbances caused according to mep(prob), as only in the case of MF
structure prediction one can observe a slight change for the worse. However, with increasing value of
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Approach Errors MEA struct. Centroid

SCFG — 0.828522 0.833894
mep(0.5) 0.819658 0.823811
mep(0.99) 0.786645 0.788478
fep(0.5) 0.805999 0.807240
fep(0.99) 0.440021 0.422778

LSCFG — 0.936285 0.919736
mep(0.5) 0.932121 0.916321
mep(0.99) 0.916540 0.896024
fep(0.5) 0.924191 0.908943
fep(0.99) 0.752030 0.722737

(a) For our tRNA database.

Approach Errors MEA struct. Centroid

SCFG — 0.409278 0.408549
mep(0.5) 0.401914 0.400515
mep(0.99) 0.376683 0.375488
fep(0.5) 0.400827 0.397566
fep(0.99) 0.189628 0.182902

LSCFG — 0.914801 0.918933
mep(0.5) 0.911963 0.915503
mep(0.99) 0.902330 0.905126
fep(0.5) 0.906507 0.911063
fep(0.99) 0.776239 0.777355

(b) For our 5S rRNA database.

Table 2: Prediction results by means of AUC values (computed by 10-fold cross-validation procedures,
using sample size 1000 and minhel = minHL = 1).

mep, there results a moderate decline in sensitivity (with respect to all four prediction schemes) of up
to about 10% for the traditional and 5% for the length-dependent sampling approach in the case of
tRNAs, whereas for 5S rRNAs, the sensitivity values only decrease up to about 3% to 4% for both
sampling variants. Unsurprisingly, for both RNA data, the change for the worse by means of measured
sensitivity is less significant when considering MP structure predictions than when employing any of the
other three principles, especially in the case of the LSCFG model. This is due to the fact that MP
structures are always extracted by relying on the exact distribution (see discussion above). Altogether,
these observations indicate that relative disturbances caused by mep do not have a significant negative
effect on the predictive accuracy.
Moreover, Table 1 indicates that generating errors according to the fep(prob) variant (unsurprisingly)
yields greater losses in the accuracies of selected predictions. In fact, as prob gets greater, there generally
result considerably smaller PPV values for all four prediction schemes (mostly for MF structures) than in
the corresponding undisturbed case. Furthermore, the respective sensitivity values degrade enormously,
albeit again comparatively less in connection with MP structure predictions. However, these changes
for the worse are obviously less significant when using the length-dependent sampling approach instead
of the more general conventional variant, which matches the observations made above for disturbances
caused by mep(prob). Nevertheless, errors produced according to fep(prob) for moderate percentages
prob seem to generally have only a rather small influence on the resulting prediction accuracy. In most
cases, only marginal losses in performance can be expected when disturbances are generated by fep(prob)
with values prob of up to about 0.5, whereas for percentages of up to about 0.75, there should usually still
result an acceptable accuracy of selected predictions (according to any of the four considered extraction
principles).
Finally, it should be mentioned that all these observations and conclusions are actually affirmed by
comparing the more reliable AUC results given in Table 2, which draw a rather similar picture of the
behavior of both sampling approaches under the influence of the considered types and dimensions of
relative disturbances in the underlying ensemble distribution.
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3.3.1 Sampling Quality – Specific Values Related to Shapes

Obviously, the sensitivity and PPV measures used in the last section for assessing the accuracy of pre-
dicted foldings depend only on the numbers of correctly and incorrectly predicted base pairs (compared
to the trusted database structure). For biologists, however, it is usually much more important to get the
correct shape of the native folding. This is due to the fact that a predicted set of suboptimal foldings cal-
culated by modern computational structure prediction methods generally contains lots of similar foldings
but for biologists, only those with significant structural differences are of interest. According to these
aspects, the concept of abstract shapes was introduced [GVR04, SVR+06, JRG08], which are defined as
morphic images of secondary structures such that each shape comprises a class of analogical foldings.
Notably, there are five different shape levels which have been proven to gradually increase abstraction
by disregarding certain unpaired regions or combining nested helices (see e.g. [NS09]), where secondary
structures can accordingly be considered level 0 shapes.
For these reasons, we decided to complete our analysis of the influence of disturbances to the quality of
probabilistic statistical sampling by considering the following meaningful specific values related to the
shapes of predictions and sampled structures as defined in [NSar, SN]:

• Frequency of prediction of correct structure (CSPfreq): In how many cases is the predicted secondary
structure (or its shape) equal to the correct structure (or the correct shape)?

• Frequency of correct shape occurring in a sample (CSOfreq): In how many cases can the correct
shape (on different levels) be found in the generated sample set?

• Number of occurrences of correct shape in a sample (CSnum): How many times can the correct
shape be found in the generated sample set?

• Number of different shapes in a sample (DSnum): How many different secondary structures (or
shapes) can be found in the generated sample set?

We can easily compute the respective values from the predicted structures and the corresponding sample
sets that were derived for the calculation of the sensitivity and PPV measures in the last section. The
obtained results are collected in Tables 9a to 10g of Section Sm-II. Some of the most interesting ones are
recorded in Tables 3 and 4.

First, as regards tRNAs, we observe that for MP predictions, disturbances caused by mep(prob) do
generally not have a noticeable negative impact on the frequency of correct structure predictions (see
Table 9a), and for the three other extraction principles, such disturbances do at least not yield a significant
decline of the corresponding CSPfreq value for shape levels 2 to 5 and under the assumption of the LSCFG
approach, where for MF structures, there indeed results a slightly higher CSPfreq value with increasing
relative error percentage prob (see Tables 9b to 9d). When the more intensive variant as defined by
fep(prob) is used for incorporating random errors into the considered sampling probabilities, the LSCFG
based sampling algorithm still yields acceptable results with respect to CSPfreq on abstraction levels 2
to 5, where for MP and MF structure predictions it obviously behaves quite resistant to the imposed
distributions even for large values of prob.
Similar results are observed for 5S rRNAs (see Tables 10a to 10d, where for all four prediction selecting
principles, the CSPfreq values (for all shape levels in case of MP predictions and at least for shape levels
1 to 5 for all other prediction types) generally do not get significantly worse when applying the LSCFG
sampling approach with inside values disturbed according to mep(prob) for any percentage prob ∈ (0, 1)
or according to the more intense relative disturbance variant fep(prob) for moderate values prob ∈ (0, 1)
(of up to about prob = 0.75).
Moreover, comparing the discussed CSPfreq results for the LSCFG variant to the corresponding ones
for the conventional SCFG approach, we get additional evidence that the length-independent sampling
method reacts stronger to relative disturbances in the underlying ensemble distribution for a given se-
quence than its length-dependent counterpart. As already mentioned, this is due to the fact that the
ensemble distribution considered in the length-dependent case is much more centered due to the more
explicit (length-dependently trained) grammar parameters, such that randomly generated errors on par-
ticular probabilities carry less weight.

Now, let us consider the three remaining specific values CSOfreq, CSnum and DSnum that can eventually
be used to assess the overall quality of generated sample sets rather than the accuracy of corresponding
selected predictions. Basically, the obtained CSOfreq and CSnum results for tRNAs and 5S rRNAs (as
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Shape Level
Approach Errors

0 1 2 3 4 5

SCFG — 0.2413 0.4082 0.5548 0.5548 0.5552 0.6278
mep(0.5) 0.2409 0.4068 0.5548 0.5548 0.5552 0.6265
mep(0.99) 0.1877 0.3551 0.5382 0.5382 0.5386 0.6075
fep(0.5) 0.2339 0.4017 0.5511 0.5511 0.5516 0.6269
fep(0.99) 0.0014 0.0384 0.1979 0.1979 0.1984 0.2326

LSCFG — 0.3324 0.4956 0.6574 0.6574 0.6579 0.7351
mep(0.5) 0.3324 0.4956 0.6574 0.6574 0.6579 0.7351
mep(0.99) 0.3236 0.4892 0.6560 0.6560 0.6565 0.7332
fep(0.5) 0.3324 0.4966 0.6588 0.6588 0.6593 0.7369
fep(0.99) 0.0624 0.2626 0.6246 0.6250 0.6250 0.6967

(a) CSPfreq values (for selection principle MP struct.).

Shape Level
Approach Errors

0 1 2 3 4 5

SCFG — 0.2099 0.3699 0.5594 0.5594 0.5599 0.6302
mep(0.5) 0.1683 0.3301 0.5372 0.5372 0.5377 0.6047
mep(0.99) 0.0522 0.1822 0.4517 0.4517 0.4517 0.5215
fep(0.5) 0.1049 0.2547 0.5155 0.5155 0.5160 0.5793
fep(0.99) 0.0000 0.0125 0.1110 0.1110 0.1119 0.2062

LSCFG — 0.3269 0.4892 0.6560 0.6565 0.6565 0.7337
mep(0.5) 0.2534 0.4235 0.6708 0.6708 0.6713 0.7485
mep(0.99) 0.1137 0.2954 0.6801 0.6801 0.6801 0.7568
fep(0.5) 0.1794 0.3653 0.6704 0.6704 0.6709 0.7531
fep(0.99) 0.0023 0.1262 0.6334 0.6334 0.6357 0.7240

(b) CSPfreq values (for selection principle MF struct.).

Shape Level
Approach Errors

0 1 2 3 4 5

SCFG — 0.0555 0.2094 0.4193 0.4193 0.4207 0.4679
mep(0.5) 0.0416 0.1817 0.4045 0.4045 0.4055 0.4489
mep(0.99) 0.0125 0.0989 0.3112 0.3112 0.3126 0.3570
fep(0.5) 0.0245 0.1364 0.3662 0.3662 0.3666 0.4059
fep(0.99) 0.0000 0.0014 0.0245 0.0245 0.0250 0.0546

LSCFG — 0.1854 0.3574 0.4919 0.4919 0.4919 0.5465
mep(0.5) 0.1405 0.3056 0.4998 0.4998 0.4998 0.5567
mep(0.99) 0.0730 0.2191 0.4753 0.4753 0.4753 0.5284
fep(0.5) 0.1003 0.2556 0.4836 0.4836 0.4836 0.5409
fep(0.99) 0.0009 0.0781 0.3902 0.3902 0.3921 0.4508

(c) CSPfreq values (for selection principle MEA struct.).

Shape Level
Approach Errors

0 1 2 3 4 5

SCFG — 0.0374 0.1276 0.2973 0.2973 0.2977 0.3130
mep(0.5) 0.0273 0.1045 0.2779 0.2779 0.2783 0.2908
mep(0.99) 0.0083 0.0541 0.2007 0.2007 0.2007 0.2173
fep(0.5) 0.0134 0.0795 0.2473 0.2473 0.2473 0.2603
fep(0.99) 0.0000 0.0009 0.0120 0.0120 0.0120 0.0227

LSCFG — 0.1729 0.3158 0.4300 0.4300 0.4300 0.4762
mep(0.5) 0.1322 0.2728 0.4374 0.4374 0.4374 0.4859
mep(0.99) 0.0693 0.1914 0.4101 0.4101 0.4101 0.4558
fep(0.5) 0.0957 0.2261 0.4207 0.4207 0.4207 0.4642
fep(0.99) 0.0009 0.0633 0.3264 0.3264 0.3269 0.3648

(d) CSPfreq values (for selection principle Centroid).

Table 3: Specific values related to shapes of predictions and sampled structures, obtained from our tRNA
database (by 10-fold cross-validation procedures, using sample size 1000 and minhel = minHL = 1).

18



Shape Level
Approach Errors

0 1 2 3 4 5

SCFG — 0.0000 0.0026 0.0052 0.0131 0.0366 0.7110
mep(0.5) 0.0000 0.0009 0.0026 0.0113 0.0287 0.7128
mep(0.99) 0.0000 0.0026 0.0044 0.0095 0.0227 0.6919
fep(0.5) 0.0000 0.0017 0.0043 0.0113 0.0374 0.6954
fep(0.99) 0.0000 0.0000 0.0000 0.0017 0.0096 0.5474

LSCFG — 0.2141 0.4256 0.4744 0.4900 0.9408 0.9843
mep(0.5) 0.2141 0.4256 0.4744 0.4900 0.9408 0.9843
mep(0.99) 0.1941 0.4221 0.4761 0.4892 0.9452 0.9852
fep(0.5) 0.2124 0.4248 0.4726 0.4883 0.9417 0.9852
fep(0.99) 0.0209 0.3029 0.3725 0.4186 0.8529 0.9809

(a) CSPfreq values (for selection principle MP struct.).

Shape Level
Approach Errors

0 1 2 3 4 5

SCFG — 0.0000 0.0026 0.0052 0.0131 0.0357 0.7128
mep(0.5) 0.0000 0.0009 0.0026 0.0122 0.0305 0.7180
mep(0.99) 0.0000 0.0026 0.0044 0.0105 0.0235 0.6902
fep(0.5) 0.0000 0.0017 0.0043 0.0113 0.0383 0.6971
fep(0.99) 0.0000 0.0000 0.0000 0.0035 0.0200 0.5439

LSCFG — 0.2002 0.4256 0.4700 0.4866 0.9417 0.9861
mep(0.5) 0.1332 0.3960 0.4439 0.4587 0.9434 0.9869
mep(0.99) 0.0365 0.3630 0.4308 0.4491 0.9304 0.9861
fep(0.5) 0.0801 0.3847 0.4404 0.4561 0.9400 0.9861
fep(0.99) 0.0035 0.1497 0.2106 0.3325 0.5440 0.9730

(b) CSPfreq values (for selection principle MF struct.).

Shape Level
Approach Errors

0 1 2 3 4 5

SCFG — 0.0000 0.0000 0.0000 0.0000 0.0261 0.3821
mep(0.5) 0.0000 0.0000 0.0000 0.0000 0.0209 0.3698
mep(0.99) 0.0000 0.0000 0.0000 0.0000 0.0122 0.3003
fep(0.5) 0.0000 0.0000 0.0000 0.0000 0.0252 0.3438
fep(0.99) 0.0000 0.0000 0.0000 0.0000 0.0026 0.0444

LSCFG — 0.1062 0.3891 0.4291 0.4378 0.9051 0.9835
mep(0.5) 0.1010 0.3751 0.4134 0.4239 0.8921 0.9782
mep(0.99) 0.0392 0.3429 0.3986 0.4213 0.8712 0.9791
fep(0.5) 0.0740 0.3839 0.4239 0.4387 0.8877 0.9791
fep(0.99) 0.0017 0.1358 0.1863 0.2942 0.4970 0.9634

(c) CSPfreq values (for selection principle MEA struct.).

Shape Level
Approach Errors

0 1 2 3 4 5

SCFG — 0.0000 0.0000 0.0000 0.0000 0.0104 0.1097
mep(0.5) 0.0000 0.0000 0.0000 0.0000 0.0104 0.1062
mep(0.99) 0.0000 0.0000 0.0000 0.0000 0.0078 0.0827
fep(0.5) 0.0000 0.0000 0.0000 0.0000 0.0061 0.0932
fep(0.99) 0.0000 0.0000 0.0000 0.0000 0.0009 0.0078

LSCFG — 0.0966 0.2916 0.3238 0.3316 0.8703 0.9686
mep(0.5) 0.0879 0.3142 0.3516 0.3621 0.8625 0.9686
mep(0.99) 0.0322 0.2924 0.3377 0.3595 0.8294 0.9651
fep(0.5) 0.0662 0.3194 0.3551 0.3638 0.8512 0.9695
fep(0.99) 0.0017 0.1053 0.1471 0.2219 0.4831 0.9339

(d) CSPfreq values (for selection principle Centroid).

Table 4: Specific values related to shapes of predictions and sampled structures, obtained from our 5S
rRNA database (by 10-fold cross-validation procedures, using sample size 1000 and minhel = minHL = 1).
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reported in Tables 9e to 9f and Tables 10e to 10f), respectively, show a similar picture and thus yield
similar conclusions as the corresponding CSPfreq values discussed above. As a consequence to the fact that
for larger relative error percentages prob, for the less intensive disturbance variant defined by mep(prob)
and especially for the more grave version implied by fep(prob), the resulting values for CSOfreq and
CSnum usually get smaller, the corresponding DSnum values inevitably increase with growing disturbance
influences imposed by mep(prob) and especially fep(prob) (see Tables 9g and 10g). This actually means
that the diversity within the generated sample sets generally gets greater as the overall sampling quality
(with respect to occurrences of the correct structure in the sample) decreases, which could be fully
expected.

4 Conclusion and Future Work

In this article, we performed a comprehensive experimental analysis on the effect of disturbances in the
ensemble distribution for a given sequence to the quality of corresponding sets of candidate structures
generated with the (L)SCFG based statistical sampling method studied in [NSar, SN]. Basically, two
different levels of errors were considered for randomly creating disturbances on all inside values for a
given input sequence according to the underlying grammar model: relative and absolute ones.
During our analysis (on the basis of trusted sets of tRNA and 5S rRNA data), we immediately observed
that even incorporating only rather small absolute errors into (all or particular instances of the) inside
values causes problematic disturbances of the resulting sampling probabilities that generally lead to the
generation of useless sample sets. This can be assumed to be due to the fact that the installation of
absolute errors usually makes it impossible for the employed sampling strategy to identify which ones of
the considered inside probabilities for a given input sequence must originally (i.e., in the exact case) have
been equal or unequal to zero, which inevitably results in a misguided behavior of the strategy, as it is
no longer ensured that it creates only reasonable substructures for a considered sequence fragment.
However, both SCFG approaches (length-dependent and traditional one) behave rather resistant to dis-
turbances of the needed conditional sampling probabilities that are caused by generating (moderate)
relative errors on all (and also only on particular) inside values for a given input sequence. In general,
even large relative errors seem to have no enormous negative impact on both the predictive accuracy and
the overall quality of generated sample sets. That is, the reaction of the (L)SCFG based statistical sam-
pling algorithm to the relative disturbances is fair enough to still obtain meaningful structure predictions
(especially if the most likely structure of the sample is selected as predicted folding, in strong analogy to
conventional SCFG based DPAs), and the overall quality of the resulting sample sets is still acceptable
such that they might often also be used for further applications (like, e.g. probability profiling for specific
loop types).
Consequently, it seems reasonable to believe that the needed sampling probabilities do not necessarily have
to be computed in the exact way, but it may probably suffice to only (adequately) approximate them. In
fact, the worst-case time complexity of any particular (L)SCFG based sampling method could potentially
be reduced by developing a suitable approximation procedure (or at least an adequate heuristic method)
for the computation of the needed sampling probabilities, where an appropriate approximation ratio (or
at least an acceptable ratio of correctly and incorrectly computed zero values) should be attempted to
ensure that the sampling quality remains sufficiently high, as indicated by the experimental disturbance
analysis results discussed within this article.
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Supplementary Material

Sm-I Formal Description of the Sampling Process

In the sequel, given an RNA molecule r consisting of n nucleotides, we denote the corresponding sequence
fragment from position i to position j, 1 ≤ i ≤ j ≤ n, by Ri,j = riri+1 . . . rj−1rj . Additionally, by Si,j
we denote a structure on the sequence fragment Ri,j that meets all the constraints of our definition of
RNA secondary structures.
Briefly, according to [NSar, SN], a complete secondary structure S1,n for a given input sequence r of
length n can be sampled in the following recursive way: Start with the entire RNA sequence R1,n and
consecutively compute the adjacent substructures (single-stranded regions and paired substructures) of
the exterior loop (from left to right). Any (paired) substructure on fragment Ri,j , 1 ≤ i < j ≤ n, is folded
by recursively constructing substructures (hairpins, stacked pairs, bulges, interior and multibranched
loops) on smaller fragments Rl,h, i ≤ l < h ≤ j.
Note that this sampling process is similar to the traceback algorithm employed in MFE based dynamic
programming algorithms. Actually, the main difference is that in those algorithms, base pairings are
selected by the minimum free energy principle for the fragments Ri,j , 1 ≤ i, j ≤ n whereas here, base pairs
are randomly sampled according to conditional probability distributions for the corresponding fragments.
These distributions are derived from definitions of probabilities for particular choices (such as paired and
unpaired bases or specific loop types). Notably, they only depend on the precomputed (skewed) inside
probabilities α̂X(i, j) for input sequence r, the thereof additionally precalculated probabilities

α̂AT (h, j) :=
∑(j−1)

l=(h−1)+minps

α̂A(h, l) · α̂T (l + 1, j), (15)

α̂AB(h, j) :=
∑(j−2)

l=(h−1)+minps

α̂A(h, l) · α̂B(l + 1, j − 1), (16)

α̂AO(h, j) :=
∑(j−1)−minps

l=(h−1)+minps

α̂A(h, l) · α̂O(l + 1, j − 1), (17)

α̂AN (h, j) :=
∑(j−1)

l=(h−1)+minps

α̂A(h, l) · α̂N (l + 1, j − 1), (18)

corresponding to inside values for combined intermediate symbols, where i ≤ h ≤ j, and of course the
trained grammar parameters (transition probabilities only).
Algorithms 1 to 4 formally describe how the sampling strategy works. Note that the type (or shape) and
actual composition (of accessible base pairs and unpaired bases) of a particular substructure (correspond-
ing to a valid derivation tree) on a given fragment Ri,j are randomly drawn according to the conditional
probability distributions induced by the respective sets of all (valid) choices for the unique intermediate
symbol of the grammar that generates such substructures (that represents the root of the corresponding
subtree). Principally, each of the presented algorithms describing the employed sampling strategy relies
on a moderate number of formal set definitions for the respective mutually exclusive and exhaustive cases
in order to perform the needed random choices, which basically all obey to the same scheme.
Particularly, for sampling shape and actual composition (free base pairs and unpaired bases) of the
exterior loop, Algorithm 1 considers the following sets:

acT (i, j) := {{x, prob} | x ∈ {C,A,CA,AT,CAT} and prob =
∑
{y,pr}∈acTx(i,j)

pr 6= 0}, (19)

where

acTC(i, j) := {{0, prob} | prob = α̂C(i, j) · Prtr(T → C) 6= 0}, (20)

acTA(i, j) := {{0, prob} | prob = α̂A(i, j) · Prtr(T → A) 6= 0}, (21)

acTCA(i, j) := {{h, prob} | (i+ 1) ≤ h ≤ (j + 1)−minps and

prob = α̂C(i, h− 1) · α̂A(h, j) · Prtr(T → CA) 6= 0}, (22)

acTAT (i, j) := {{l, prob} | (i− 1) + minps ≤ l ≤ (j − 1) and

prob = α̂A(i, l) · α̂T (l + 1, j) · Prtr(T → AT ) 6= 0}, (23)

acTCAT (i, j) := {{h, prob} | (i+ 1) ≤ h ≤ j −minps and

prob = α̂C(i, h− 1) · α̂AT (h, j) · Prtr(T → CAT ) 6= 0}, (24)
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Algorithm 1 Sampling an entire secondary structure

Input: RNA sequence r of length n ≥ 1,
trained transition probabilities Prtr(rule), for rule ∈ RGs ,
precomputed inside probabilities α̂X(i, j), for X ∈ IGs ∪ {AT,AB,AO,AN} and 1 ≤ i, j ≤ n.

Output: helices =
{
{i, j, k} | 1 ≤ i < j ≤ n and k ≥ minhel and

i.j, (i+1).(j−1), . . . , (i+(k−1)).(j−(k−1)) are consecutive base pairs
}

.

procedure ComputeRandomExteriorLoop()
helices = ∅
i = 1, j = n
while (j − i+ 1) 6= 0 do

/*Sample next substructure on Ri,j according to acT (i, j), i.e. construct paired substructure starting with free base
pair h.l, for i ≤ h < l ≤ j, or leave Ri,j unpaired:*/

extLoopType = Sample exterior loop substructure type for Ri,j according to acT (i, j)
if extLoopType = C then

/*Ri,j becomes single-stranded:*/

return helices
else if extLoopType = A then

/*Ri,j becomes paired structure:*/

h = i, l = j
else if extLoopType = CA then

/*Ri,j becomes paired structure preceded by single-strand:*/

Sample h according to acTCA(i, j)
l = j

else if extLoopType = AT then
/*Ri,j becomes paired structure followed by further structure(s):*/

h = i
Sample l according to acTAT (i, j)

else if extLoopType = CAT then
/*Ri,j becomes paired structure preceded by single-strand and followed by further structure(s):*/

Sample h according to acTCAT (i, j)
Sample l according to ac∗AT (h, j)

end if
if extLoopType ∈ {A,CA,AT,CAT} and h.l successfully sampled then

/*Recursively fold substructures on Rh,l:*/

helices = helices ∪ {{h, l,minhel}}
helices = ComputeRandomLoop(h+ (minhel − 1), l − (minhel − 1), helices)
/*Consider the remaining fragment R(l+1),j :*/

i = l + 1
else

/*Sampling failed (as there exist no valid choices), so stop folding the loop (such that Ri,j becomes single-
stranded):*/

return helices
end if

end while
return helices
end procedure
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Algorithm 2 Sampling any substructure

procedure ComputeRandomLoop(i, j, helices)
loopType = Sample loop type closed by i.j according to acL(i, j)
if loopType = F then

/*Pair i.j closes hairpin loop:*/

return helices
else if loopType = P then

/*Pair i.j closes stacked pair:*/
helices[−1, 3] = helices[−1, 3] + 1 /*increments length of last added helix*/

helices = ComputeRandomLoop(i+ 1, j − 1, helices)
else if loopType = G then

/*Pair i.j closes bulge or interior loop:*/

helices = ComputeRandomBulgeInteriorLoop(i, j, helices)
else if loopType = M then

/*Pair i.j closes multiloop:*/

helices = ComputeRandomMultiLoop(i, j, helices)
else

/*Sampling failed (as there exist no valid choices), so stop folding the loop (such that Ri+1,j−1 becomes single-stranded
hairpin loop):*/

return helices
end if
return helices
end procedure

Algorithm 3 Sampling a particular bulge or interior loop

procedure ComputeRandomBulgeInteriorLoop(i, j, helices)
/*Note that the following allows maxbulge =∞ (then no restrictions are applied):*/

loopType = Sample bulge or interior loop type on Ri+1,j−1 according to acG(i, j)
if loopType = BA then

/*Bulge on the left:*/

Sample h according to acGBA(i, j)
l = j

else if loopType = AB then
/*Bulge on the right:*/

h = i
Sample l according to acGAB(i, j)

else if loopType = BAB then
/*Interior loop:*/

Sample h according to acGBAB(i, j)
Sample l according to ac∗AB(h, j)

end if
if loopType ∈ {BA,AB,BAB} and h.l successfully sampled then

/*Recursively fold substructures on Rh,l:*/

helices = helices ∪ {{h, l,minhel}}
helices = ComputeRandomLoop(h+ (minhel − 1), l − (minhel − 1), helices)

else
/*Sampling failed (as there exist no valid choices), so stop folding the loop (such that Ri+1,j−1 becomes single-stranded
hairpin loop):*/

return helices
end if
return helices
end procedure
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Algorithm 4 Sampling a complete multiloop

procedure ComputeRandomMultiLoop(i, j, helices)
k = 0, lk = i
while (j − lk − 1) ≥ minps do

/*Create (k + 1)th paired substructure on Rlk+1,j−1, starting with accessible base pair hk+1.lk+1, for lk < hk+1 <
lk+1 < j:*/

if (k + 1) = 1 then
Sample h according to acMUAO(lk, j)
Sample l according to ac∗AO(h, j)

else if (k + 1) = 2 then
Sample h according to acOUAN (lk, j)
Sample l according to ac∗AN (h, j)

else if (k + 1) ≥ 3 then
Sample h according to acNUAN (lk, j)
Sample l according to ac∗AN (h, j)

end if
if h.l successfully sampled then
hk+1 = h, lk+1 = l
/*Recursively fold substructures on Rhk+1,lk+1

:*/

helices = helices ∪ {{hk+1, lk+1,minhel}}
helices = ComputeRandomLoop(hk+1 + (minhel − 1), lk+1 − (minhel − 1), helices)
/*Decide whether to leave the remaining fragment Rlk+1+1,j−1 unpaired or not:*/

if (k + 1) ≥ 2 then
Uniformly draw real value random ∈ (0, 1]
if random ∈ (0, decU (lk+1, j)] then

/*No additional base pairs:*/

return helices
else if random ∈ (decU (lk+1, j), 1] then

/*At least one more paired substructure:*/

k = k + 1
end if

end if
else

/*Sampling failed (as there exist no valid choices), so stop folding the loop (such that Rlk+1,j−1 becomes single-
stranded):*/

return helices
end if

end while
return helices
end procedure
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and

ac∗AT (h, j) := {{l, prob} | (h− 1) + minps ≤ l ≤ (j − 1) and prob = α̂A(h, l) · α̂T (l + 1, j) 6= 0}. (25)

For sampling the type of the loop closed by a given base pair i.j, Algorithm 2 relies on

acL(i, j) := {{x, prob} | x ∈ {F, P,G,M} and prob = α̂x(i+ 1, j − 1) · Prtr(L→ x) 6= 0}. (26)

Algorithm 3 employs the following sets in order to sample a particular bulge or interior loop (closed by
a given base pair i.j) on the considered sequence fragment Ri+1,j−1:

acG(i, j) := {{x, prob} | x ∈ {BA,AB,BAB} and prob =
∑
{y,pr}∈acGx(i,j)

pr 6= 0}, (27)

where

acGBA(i, j) := {{h, prob} | (i+ 2) ≤ h ≤ j −minps and

prob = α̂B(i+ 1, h− 1) · α̂A(h, j − 1) · Prtr(G→ BA) 6= 0}, (28)

acGAB(i, j) := {{l, prob} | i+ minps ≤ l ≤ (j − 2) and

prob = α̂A(i+ 1, l) · α̂B(l + 1, j − 1) · Prtr(G→ AB) 6= 0}, (29)

acGBAB(i, j) := {{h, prob} | (i+ 2) ≤ h ≤ j −minps − 1 and

prob = α̂B(i+ 1, h− 1) · α̂AB(h, j) · Prtr(G→ BAB) 6= 0}, (30)

and

ac∗AB(h, j) := {{h, prob} | (h− 1) + minps ≤ l ≤ (j − 2) and prob = α̂A(h, l) · α̂B(l+ 1, j − 1) 6= 0}. (31)

Finally, for sampling a complete multiloop (closed by a given base pair i.j) on the considered sequence
fragment Ri+1,j−1, the following formal definitions are used by Algorithm 4:

acMUAO(i, j) := {{h, prob} | (i+ 1) ≤ h ≤ j − 2 ·minps and

prob = α̂U (i+ 1, h− 1) · α̂AO(h, j) · Prtr(M → UAO) 6= 0}, (32)

acOUAN (lk, j) := {{h, prob} | (lk + 1) ≤ h ≤ j −minps and

prob = α̂U (lk + 1, h− 1) · α̂AN (h, j) · Prtr(O → UAN) 6= 0}, (33)

acNUAN (lk, j) := {{h, prob} | (lk + 1) ≤ h ≤ j −minps and

prob = α̂U (lk + 1, h− 1) · α̂AN (h, j) · Prtr(N → UAN) 6= 0}, (34)

as well as

ac∗AO(h, j) := {{l, prob} | (h− 1) + minps ≤ l ≤ (j − 1)−minps and prob = α̂A(h, l) · α̂O(l + 1, j − 1) 6= 0},
(35)

ac∗AN (h, j) := {{l, prob} | (h− 1) + minps ≤ l ≤ (j − 1) and prob = α̂A(h, l) · α̂N (l + 1, j − 1) 6= 0},
(36)

and finally (for deciding whether an additional substructure should be added or not),

decU (lk+1, j) :=
α̂U (lk+1 + 1, j − 1) · Prtr(N → U)

α̂U (lk+1 + 1, j − 1) · Prtr(N → U) +
∑
{h,prob}∈acN(lk+1,j)

prob
. (37)

It remains to mention that after a preprocessing of the given input sequence (including the complete
dynamic programming method for deriving all inside probabilities α̂X(i, j), for X ∈ IGs and 1 ≤
i, j ≤ n, as well as the subsequent calculation of the additionally needed probabilities α̂x(h, j), for
x ∈ {AT,AB,AO,AN} and 1 ≤ h, j ≤ n, which both take O(n3) time and require O(n2) storage 7), each
of the probabilities prob defined for a particular choice of a paired base (h or l) in the respective subset
(acXy(i, j) or ac∗z(h, j)) of all possible choices can be derived in constant time. Furthermore, according

7Note that if we modify the considered SCFG Gs such that each occurrence of any pattern x ∈ {AT,AB,AO,AN} (in
the conclusions of the production rules of Gs) is replaced by a new intermediate symbol Y /∈ IGs corresponding to the
respective pattern x, then α̂x(i, j), 1 ≤ i, j ≤ n, is equal to the inside probability α̂Y (i, j) of this new intermediate symbol
Y and is automatically derived during the inside value computations.
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to their definitions, none of these subsets contains more than n choices for a particular paired base in the
worst-case, that is card(acXy(i, j)) ∈ O(n) and card(ac∗z(h, j)) ∈ O(n). Hence, the sampling strategy
needs O(n) time for deriving the respective probability distribution and drawing a corresponding random
choice.
Additionally, due to the cardinalities of O(n) for each of the O(1) distinct subsets acXy(i, j) (corre-
sponding to production rules X → y) for any main set acX(i, j) (for premise X), each of the probabilities
defined for a particular choice of the shape of a random substructure (corresponding to one of its subsets
and hence to the respective production X → y applied from the considered intermediate symbol X in
order to generate that shape) can be computed in O(n) time (since for each of the O(1) rules X → y, we
have to compute the sum of card(acXy(i, j)) ∈ O(n) terms, where each term is obtained in constant time,
see above). Then, the respective probability distribution employed for (shape or loop type) sampling can
be derived in constant time (as card(acX(i, j)) ∈ O(1)). For example, the distribution for sampling the
exterior loop substructure type according to acT (i, j) can be derived in 2 · O(1) + 3 · O(n) time.
Altogether, there obviously results O(n) time complexity for sampling a random base pair h.l (by first
sampling the substructure type (if needed), then the leftmost base h and finally the rightmost base l) on
Ri,j , 1 ≤ i ≤ h < l ≤ j ≤ n. Thus, since any structure of size n can have at most bn−minHL

2 c ∈ O(n) base
pairs and any base pair can be sampled in linear time, the time requirements of the sampling strategy
for constructing a complete secondary structure S1,n is bounded by O(n2).
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Sm-II Tables and Figures

card(X d) card(X e ∩ X d) card(X e \ X d) card(X d \ X e)
X card(X e)

mev fev mev fev mev fev mev fev
A 2649 1733 1698 1547 1529 1102 1120 186 169
B 2926 1704 1741 1660 1709 1266 1217 44 32
C 2926 1847 1847 1806 1808 1120 1118 41 39
F 2926 1873 1891 1840 1849 1086 1077 33 42
G 2696 1777 1781 1616 1617 1080 1079 161 164
M 2548 1597 1573 1357 1338 1191 1210 240 235
N 3002 1957 1945 1957 1945 1045 1057 0 0
O 2770 1838 1818 1727 1692 1043 1078 111 126
P 2649 1721 1745 1553 1563 1096 1086 168 182
T 2926 1865 1905 1822 1869 1104 1057 43 36
U 3002 1938 1913 1938 1913 1064 1089 0 0
AT 2697 2699 2698 2697 2697 0 0 2 1
AB 2552 2554 2553 2552 2552 0 0 2 1
AO 2478 2482 2481 2478 2478 0 0 4 3
AN 2697 2699 2698 2697 2697 0 0 2 1

(a) Traditional SCFG model.

card(X d) card(X e ∩ X d) card(X e \ X d) card(X d \ X e)
X card(X e)

mev fev mev fev mev fev mev fev
A 469 1587 1630 325 326 144 143 1262 1304
B 1651 1996 1980 1337 1310 314 341 659 670
C 1096 2001 1987 1053 1025 43 71 948 962
F 871 1888 1850 819 801 52 70 1069 1049
G 729 1603 1583 457 457 272 272 1146 1126
M 359 1517 1525 170 184 189 175 1347 1341
N 1331 1601 1626 786 758 545 573 815 868
O 690 1524 1527 357 355 333 335 1167 1172
P 435 1612 1565 312 306 123 129 1300 1259
T 708 1772 1752 614 594 94 114 1158 1158
U 1571 2038 2059 1323 1322 248 249 715 737
AT 1394 2630 2613 1394 1394 0 0 1236 1219
AB 1829 2485 2469 1829 1829 0 0 656 640
AO 499 2308 2291 499 499 0 0 1809 1792
AN 1832 2620 2602 1831 1832 1 0 789 770

(b) LSCFG model.

Table 5: Numbers of relevant inside values (inside probabilities being greater than zero) that were con-
sidered for obtaining the profiles presented in Figure 2b (and Figure 6), where X e := {{i, j} | 1 ≤ i, j ≤
n and αX(i, j) 6= 0} and X d := {{i, j} | 1 ≤ i, j ≤ n and α̂X(i, j) 6= 0}.
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card(X d) card(X e ∩ X d) card(X e \ X d) card(X d \ X e)X card(X e)
mev fev mev fev mev fev mev fev

TC 76 36 39 36 39 40 37 0 0
TA 54 33 41 22 32 32 22 11 9
TCA 1829 766 856 480 673 1349 1156 286 183
TAT 2595 999 961 966 924 1629 1671 33 37
TCAT 2628 1644 1646 1644 1646 984 982 0 0
AT 62102 25675 25693 24940 24671 37162 37431 735 1022
LF 2775 1750 1777 1750 1777 1025 998 0 0
LP 2522 1533 1542 1487 1486 1035 1036 46 56
LG 2552 1543 1539 1540 1536 1012 1016 3 3
LM 2408 1290 1265 1288 1261 1120 1147 2 4
GBA 59580 23057 23288 22390 22547 37190 37033 667 741
GAB 0 0 0 0 0 0 0 0 0
GBAB 59476 36453 37479 36428 37461 23048 22015 25 18
AB 1041908 454132 457662 441016 442856 600892 599052 13116 14806
MUAO 56901 41296 40054 41208 40010 15693 16891 88 44
AO 980735 488660 456896 473742 442002 506993 538733 14918 14894
OUAN 56999 41352 40087 41329 40066 15670 16933 23 21
NUAN 49970 36636 35377 36615 35356 13355 14614 21 21
AN 985172 511715 490277 497364 474716 487808 510456 14351 15561

(a) Traditional SCFG model.

card(X d) card(X e ∩ X d) card(X e \ X d) card(X d \ X e)X card(X e)
mev fev mev fev mev fev mev fev

TC 7 7 7 7 7 0 0 0 0
TA 1 3 1 0 0 1 1 3 1
TCA 33 280 198 13 7 20 26 267 191
TAT 55 256 298 33 25 22 30 223 273
TCAT 161 477 461 157 153 4 8 320 308
AT 2936 17032 26734 1916 1870 1020 1066 15116 24864
LF 845 795 780 795 780 50 65 0 0
LP 409 603 581 295 292 114 117 308 289
LG 669 431 429 428 423 241 246 3 6
LM 308 152 162 152 162 156 146 0 0
GBA 401 844 881 351 355 50 46 493 526
GAB 0 0 0 0 0 0 0 0 0
GBAB 5074 11964 11884 4002 3916 1072 1158 7962 7968
AB 173376 457279 487255 109429 110855 63947 62521 347850 376400
MUAO 4229 10068 10201 3926 3939 303 290 6142 6262
AO 19149 279648 298214 8090 8203 11059 10946 271558 290011
OUAN 11284 16633 16787 9773 9863 1511 1421 6860 6924
NUAN 11880 18444 18496 10324 10491 1556 1389 8120 8005
AN 89494 306125 329250 45081 44257 44413 45237 261044 284993

(b) LSCFG model.

Table 6: Numbers of relevant sampling probabilities (being greater than zero) that were considered
for obtaining the profiles presented in Figure 2b (and Figure 6), where X zy :=

⋃
1≤i,j≤n acXy(i, j) and

Yz :=
⋃

1≤i≤h≤j≤n ac
∗
Y (h, j), with z = e and z = d denoting the exact and disturbed values, respectively.
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MP struct. MF struct. MEA struct. Centroid
Approach Errors

Sens. PPV Sens. PPV Sens. PPV Sens. PPV

SCFG — 0.7818 0.8437 0.7792 0.8445 0.7324 0.8939 0.6754 0.9158
mep(0.5) 0.7822 0.8447 0.7599 0.8370 0.7169 0.8927 0.6607 0.9140
mep(0.75) 0.7793 0.8431 0.7303 0.8217 0.6935 0.8917 0.6356 0.9123
mep(0.9) 0.7699 0.8409 0.7075 0.8117 0.6715 0.8893 0.6097 0.9115
mep(0.99) 0.7590 0.8388 0.6768 0.8004 0.6414 0.8877 0.5817 0.9127
fep(0.5) 0.7798 0.8440 0.7234 0.8184 0.6864 0.8896 0.6292 0.9134
fep(0.75) 0.7442 0.8313 0.6414 0.7736 0.6066 0.8802 0.5507 0.9032
fep(0.9) 0.6644 0.8106 0.5257 0.7229 0.4934 0.8652 0.4375 0.8952
fep(0.99) 0.4101 0.7295 0.2864 0.5590 0.2532 0.7776 0.2157 0.8291

LSCFG — 0.8545 0.9534 0.8542 0.9535 0.8335 0.9736 0.8250 0.9783
mep(0.5) 0.8545 0.9534 0.8429 0.9524 0.8236 0.9731 0.8150 0.9773
mep(0.75) 0.8542 0.9533 0.8281 0.9485 0.8098 0.9709 0.8018 0.9758
mep(0.9) 0.8546 0.9539 0.8104 0.9425 0.7978 0.9697 0.7889 0.9744
mep(0.99) 0.8519 0.9533 0.7988 0.9413 0.7833 0.9676 0.7735 0.9726
fep(0.5) 0.8548 0.9536 0.8224 0.9486 0.8029 0.9707 0.7940 0.9758
fep(0.75) 0.8524 0.9532 0.7763 0.9323 0.7674 0.9620 0.7589 0.9687
fep(0.9) 0.8315 0.9492 0.7223 0.9162 0.7131 0.9523 0.7038 0.9601
fep(0.99) 0.7530 0.9325 0.5769 0.8623 0.5668 0.9075 0.5567 0.9195

(a) Sensitivity and PPV.

Approach Errors MEA struct. Centroid

SCFG — 0.828522 0.833894
mep(0.5) 0.819658 0.823811
mep(0.75) 0.810331 0.813818
mep(0.9) 0.801393 0.801842
mep(0.99) 0.786645 0.788478
fep(0.5) 0.805999 0.807240
fep(0.75) 0.761806 0.759493
fep(0.9) 0.682057 0.676879
fep(0.99) 0.440021 0.422778

LSCFG — 0.936285 0.919736
mep(0.5) 0.932121 0.916321
mep(0.75) 0.925639 0.907926
mep(0.9) 0.919747 0.900505
mep(0.99) 0.916540 0.896024
fep(0.5) 0.924191 0.908943
fep(0.75) 0.900592 0.884400
fep(0.9) 0.872742 0.848190
fep(0.99) 0.752030 0.722737

(b) AUC values.

Table 7: Prediction results for our tRNA database (computed by 10-fold cross-validation procedures,
using sample size 1000 and minhel = minHL = 1).
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MP struct. MF struct. MEA struct. Centroid
Approach Errors

Sens. PPV Sens. PPV Sens. PPV Sens. PPV

SCFG — 0.4251 0.5372 0.4251 0.5363 0.3403 0.6967 0.2689 0.8044
mep(0.5) 0.4143 0.5280 0.4160 0.5290 0.3334 0.6987 0.2643 0.8051
mep(0.75) 0.4113 0.5303 0.4105 0.5289 0.3234 0.7031 0.2566 0.8098
mep(0.9) 0.4071 0.5311 0.4064 0.5297 0.3120 0.7007 0.2466 0.8050
mep(0.99) 0.3897 0.5227 0.3894 0.5216 0.2957 0.7069 0.2362 0.8072
fep(0.5) 0.4055 0.5203 0.4049 0.5198 0.3209 0.7068 0.2532 0.8087
fep(0.75) 0.3713 0.5070 0.3708 0.5050 0.2795 0.7121 0.2247 0.8183
fep(0.9) 0.3321 0.4953 0.3261 0.4858 0.2296 0.7344 0.1829 0.8161
fep(0.99) 0.2043 0.4410 0.1756 0.3788 0.1066 0.6867 0.0814 0.7666

LSCFG — 0.8993 0.9412 0.8997 0.9409 0.8959 0.9513 0.8873 0.9574
mep(0.5) 0.8993 0.9412 0.8909 0.9380 0.8903 0.9478 0.8819 0.9541
mep(0.75) 0.8993 0.9411 0.8816 0.9348 0.8822 0.9459 0.8746 0.9528
mep(0.9) 0.8993 0.9414 0.8745 0.9323 0.8739 0.9438 0.8666 0.9500
mep(0.99) 0.8989 0.9414 0.8639 0.9269 0.8659 0.9408 0.8574 0.9482
fep(0.5) 0.8993 0.9412 0.8796 0.9328 0.8798 0.9445 0.8716 0.9515
fep(0.75) 0.8963 0.9400 0.8548 0.9217 0.8560 0.9346 0.8480 0.9432
fep(0.9) 0.8854 0.9353 0.8240 0.9065 0.8260 0.9234 0.8170 0.9338
fep(0.99) 0.8251 0.9052 0.7162 0.8375 0.7148 0.8661 0.6986 0.8879

(a) Sensitivity and PPV.

Approach Errors MEA struct. Centroid

SCFG — 0.409278 0.408549
mep(0.5) 0.401914 0.400515
mep(0.75) 0.397622 0.396770
mep(0.9) 0.383750 0.383935
mep(0.99) 0.376683 0.375488
fep(0.5) 0.400827 0.397566
fep(0.75) 0.363824 0.363257
fep(0.9) 0.326873 0.325467
fep(0.99) 0.189628 0.182902

LSCFG — 0.914801 0.918933
mep(0.5) 0.911963 0.915503
mep(0.75) 0.908958 0.911579
mep(0.9) 0.905646 0.908203
mep(0.99) 0.902330 0.905126
fep(0.5) 0.906507 0.911063
fep(0.75) 0.893417 0.895371
fep(0.9) 0.875529 0.877256
fep(0.99) 0.776239 0.777355

(b) AUC values.

Table 8: Prediction results for our 5S rRNA database (computed by 10-fold cross-validation procedures,
using sample size 1000 and minhel = minHL = 1).
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Shape Level
Approach Errors

0 1 2 3 4 5

SCFG — 0.2413 0.4082 0.5548 0.5548 0.5552 0.6278
mep(0.5) 0.2409 0.4068 0.5548 0.5548 0.5552 0.6265
mep(0.75) 0.2335 0.3990 0.5506 0.5506 0.5511 0.6246
mep(0.9) 0.2159 0.3809 0.5446 0.5446 0.5451 0.6135
mep(0.99) 0.1877 0.3551 0.5382 0.5382 0.5386 0.6075
fep(0.5) 0.2339 0.4017 0.5511 0.5511 0.5516 0.6269
fep(0.75) 0.1586 0.3269 0.5257 0.5257 0.5261 0.5908
fep(0.9) 0.0564 0.1979 0.4401 0.4401 0.4401 0.4952
fep(0.99) 0.0014 0.0384 0.1979 0.1979 0.1984 0.2326

LSCFG — 0.3324 0.4956 0.6574 0.6574 0.6579 0.7351
mep(0.5) 0.3324 0.4956 0.6574 0.6574 0.6579 0.7351
mep(0.75) 0.3329 0.4952 0.6579 0.6579 0.6584 0.7351
mep(0.9) 0.3315 0.4901 0.6574 0.6574 0.6579 0.7351
mep(0.99) 0.3236 0.4892 0.6560 0.6560 0.6565 0.7332
fep(0.5) 0.3324 0.4966 0.6588 0.6588 0.6593 0.7369
fep(0.75) 0.3232 0.4827 0.6551 0.6551 0.6556 0.7341
fep(0.9) 0.2358 0.4055 0.6394 0.6399 0.6399 0.7166
fep(0.99) 0.0624 0.2626 0.6246 0.6250 0.6250 0.6967

(a) CSPfreq values (for selection principle MP struct.).

Shape Level
Approach Errors

0 1 2 3 4 5

SCFG — 0.2099 0.3699 0.5594 0.5594 0.5599 0.6302
mep(0.5) 0.1683 0.3301 0.5372 0.5372 0.5377 0.6047
mep(0.75) 0.1128 0.2700 0.5062 0.5062 0.5067 0.5682
mep(0.9) 0.0712 0.2173 0.4808 0.4808 0.4813 0.5511
mep(0.99) 0.0522 0.1822 0.4517 0.4517 0.4517 0.5215
fep(0.5) 0.1049 0.2547 0.5155 0.5155 0.5160 0.5793
fep(0.75) 0.0231 0.1317 0.4087 0.4087 0.4092 0.4623
fep(0.9) 0.0032 0.0518 0.2918 0.2918 0.2918 0.3505
fep(0.99) 0.0000 0.0125 0.1110 0.1110 0.1119 0.2062

LSCFG — 0.3269 0.4892 0.6560 0.6565 0.6565 0.7337
mep(0.5) 0.2534 0.4235 0.6708 0.6708 0.6713 0.7485
mep(0.75) 0.1872 0.3666 0.6741 0.6741 0.6745 0.7550
mep(0.9) 0.1502 0.3384 0.6694 0.6694 0.6699 0.7545
mep(0.99) 0.1137 0.2954 0.6801 0.6801 0.6801 0.7568
fep(0.5) 0.1794 0.3653 0.6704 0.6704 0.6709 0.7531
fep(0.75) 0.0726 0.2492 0.6708 0.6717 0.6713 0.7596
fep(0.9) 0.0301 0.1933 0.6847 0.6852 0.6857 0.7688
fep(0.99) 0.0023 0.1262 0.6334 0.6334 0.6357 0.7240

(b) CSPfreq values (for selection principle MF struct.).

33



Shape Level
Approach Errors

0 1 2 3 4 5

SCFG — 0.0555 0.2094 0.4193 0.4193 0.4207 0.4679
mep(0.5) 0.0416 0.1817 0.4045 0.4045 0.4055 0.4489
mep(0.75) 0.0222 0.1456 0.3694 0.3699 0.3703 0.4147
mep(0.9) 0.0148 0.1179 0.3555 0.3560 0.3583 0.4031
mep(0.99) 0.0125 0.0989 0.3112 0.3112 0.3126 0.3570
fep(0.5) 0.0245 0.1364 0.3662 0.3662 0.3666 0.4059
fep(0.75) 0.0069 0.0712 0.2682 0.2686 0.2705 0.3070
fep(0.9) 0.0005 0.0240 0.1655 0.1655 0.1669 0.2006
fep(0.99) 0.0000 0.0014 0.0245 0.0245 0.0250 0.0546

LSCFG — 0.1854 0.3574 0.4919 0.4919 0.4919 0.5465
mep(0.5) 0.1405 0.3056 0.4998 0.4998 0.4998 0.5567
mep(0.75) 0.1128 0.2760 0.4864 0.4873 0.4864 0.5432
mep(0.9) 0.0924 0.2478 0.4827 0.4827 0.4827 0.5377
mep(0.99) 0.0730 0.2191 0.4753 0.4753 0.4753 0.5284
fep(0.5) 0.1003 0.2556 0.4836 0.4836 0.4836 0.5409
fep(0.75) 0.0532 0.2011 0.4771 0.4776 0.4771 0.5423
fep(0.9) 0.0213 0.1341 0.4508 0.4517 0.4508 0.5095
fep(0.99) 0.0009 0.0781 0.3902 0.3902 0.3921 0.4508

(c) CSPfreq values (for selection principle MEA struct.).

Shape Level
Approach Errors

0 1 2 3 4 5

SCFG — 0.0374 0.1276 0.2973 0.2973 0.2977 0.3130
mep(0.5) 0.0273 0.1045 0.2779 0.2779 0.2783 0.2908
mep(0.75) 0.0139 0.0716 0.2362 0.2362 0.2362 0.2520
mep(0.9) 0.0074 0.0656 0.2354 0.2354 0.2354 0.2502
mep(0.99) 0.0083 0.0541 0.2007 0.2007 0.2007 0.2173
fep(0.5) 0.0134 0.0795 0.2473 0.2473 0.2473 0.2603
fep(0.75) 0.0037 0.0360 0.1609 0.1609 0.1609 0.1734
fep(0.9) 0.0000 0.0069 0.0865 0.0865 0.0869 0.0939
fep(0.99) 0.0000 0.0009 0.0120 0.0120 0.0120 0.0227

LSCFG — 0.1729 0.3158 0.4300 0.4300 0.4300 0.4762
mep(0.5) 0.1322 0.2728 0.4374 0.4374 0.4374 0.4859
mep(0.75) 0.1100 0.2469 0.4258 0.4258 0.4258 0.4748
mep(0.9) 0.0874 0.2140 0.4189 0.4189 0.4189 0.4660
mep(0.99) 0.0693 0.1914 0.4101 0.4101 0.4101 0.4558
fep(0.5) 0.0957 0.2261 0.4207 0.4207 0.4207 0.4642
fep(0.75) 0.0481 0.1688 0.4046 0.4046 0.4046 0.4559
fep(0.9) 0.0199 0.1146 0.3828 0.3833 0.3828 0.4262
fep(0.99) 0.0009 0.0633 0.3264 0.3264 0.3269 0.3648

(d) CSPfreq values (for selection principle Centroid).
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Shape Level
Approach Errors

0 1 2 3 4 5

SCFG — 0.6838 0.9459 0.9903 0.9903 0.9908 0.9995
mep(0.5) 0.6274 0.9376 0.9880 0.9884 0.9889 0.9995
mep(0.75) 0.5724 0.9274 0.9898 0.9908 0.9908 1.0000
mep(0.9) 0.4707 0.9219 0.9866 0.9871 0.9875 1.0000
mep(0.99) 0.3837 0.9057 0.9898 0.9903 0.9908 0.9995
fep(0.5) 0.5534 0.9293 0.9884 0.9889 0.9889 0.9995
fep(0.75) 0.2903 0.8849 0.9852 0.9857 0.9861 0.9995
fep(0.9) 0.0883 0.8077 0.9838 0.9843 0.9843 0.9995
fep(0.99) 0.0018 0.4808 0.9556 0.9575 0.9603 0.9931

LSCFG — 0.8234 0.9288 0.9723 0.9750 0.9727 0.9986
mep(0.5) 0.8169 0.9311 0.9658 0.9681 0.9663 0.9986
mep(0.75) 0.7827 0.9260 0.9732 0.9760 0.9737 0.9986
mep(0.9) 0.7291 0.9191 0.9718 0.9732 0.9723 0.9986
mep(0.99) 0.6653 0.9122 0.9709 0.9746 0.9713 0.9986
fep(0.5) 0.7735 0.9173 0.9704 0.9741 0.9709 0.9986
fep(0.75) 0.6191 0.9048 0.9686 0.9713 0.9690 0.9986
fep(0.9) 0.3777 0.8604 0.9732 0.9750 0.9736 0.9986
fep(0.99) 0.0763 0.7106 0.9663 0.9686 0.9667 0.9986

(e) CSOfreq values.

Shape Level
Approach Errors

0 1 2 3 4 5

SCFG — 16.202 98.357 327.26 327.27 327.51 418.80
mep(0.5) 13.511 90.408 314.52 314.53 314.83 405.33
mep(0.75) 9.9097 77.641 295.10 295.12 295.47 387.67
mep(0.9) 7.1723 66.885 278.33 278.35 278.81 373.45
mep(0.99) 5.2356 56.709 255.51 255.54 256.20 354.90
fep(0.5) 9.7356 77.552 294.89 294.91 295.31 387.38
fep(0.75) 3.0058 48.215 239.50 239.53 240.34 333.77
fep(0.9) 0.5193 22.122 171.61 171.72 173.31 270.84
fep(0.99) 0.0028 5.3030 62.460 62.587 66.606 168.64

LSCFG — 101.69 326.26 708.52 708.94 709.42 805.87
mep(0.5) 90.408 307.25 712.29 712.73 713.23 810.52
mep(0.75) 75.220 288.57 710.49 710.94 711.54 810.28
mep(0.9) 62.276 270.87 708.82 709.20 709.93 809.72
mep(0.99) 51.262 252.51 708.00 708.35 709.20 807.00
fep(0.5) 70.493 281.00 710.79 711.18 711.75 810.24
fep(0.75) 40.142 229.20 704.79 705.33 706.27 807.32
fep(0.9) 20.373 193.27 695.77 696.29 698.20 802.86
fep(0.99) 1.6771 118.55 612.73 612.89 620.77 752.68

(f) CSnum values.
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Shape Level
Approach Errors

0 1 2 3 4 5

SCFG — 802.27 244.52 60.504 60.030 59.916 28.764
mep(0.5) 805.91 250.25 63.247 62.668 62.520 29.780
mep(0.75) 812.80 259.32 67.778 67.072 66.880 31.417
mep(0.9) 812.01 267.01 72.572 71.611 71.323 32.755
mep(0.99) 822.99 285.70 81.360 80.006 79.564 35.462
fep(0.5) 813.01 261.18 68.849 68.053 67.839 31.848
fep(0.75) 820.06 289.39 86.049 84.434 83.880 37.363
fep(0.9) 823.37 338.60 120.77 116.73 114.89 47.031
fep(0.99) 787.70 437.67 225.13 209.08 198.18 68.691

LSCFG — 238.30 15.045 5.6854 5.4122 5.1806 3.2274
mep(0.5) 237.12 15.061 5.7478 5.4543 5.2231 3.1970
mep(0.75) 234.02 15.304 5.9289 5.6123 5.3695 3.2496
mep(0.9) 230.18 15.572 6.0783 5.7631 5.5047 3.2811
mep(0.99) 226.25 16.097 6.3746 6.0086 5.7673 3.3176
fep(0.5) 234.80 15.367 6.0292 5.7213 5.4755 3.2501
fep(0.75) 215.02 15.921 6.4449 6.0982 5.8435 3.2944
fep(0.9) 199.10 17.503 7.5125 7.0207 6.7294 3.4531
fep(0.99) 164.88 22.047 10.309 9.5385 9.1512 3.7212

(g) DSnum values.

Table 9: Specific values related to shapes of predictions and sampled structures, obtained from our tRNA
database (by 10-fold cross-validation procedures, using sample size 1000 and minhel = minHL = 1).
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Shape Level
Approach Errors

0 1 2 3 4 5

SCFG — 0.0000 0.0026 0.0052 0.0131 0.0366 0.7110
mep(0.5) 0.0000 0.0009 0.0026 0.0113 0.0287 0.7128
mep(0.75) 0.0000 0.0017 0.0035 0.0105 0.0322 0.7050
mep(0.9) 0.0000 0.0009 0.0017 0.0078 0.0331 0.7180
mep(0.99) 0.0000 0.0026 0.0044 0.0095 0.0227 0.6919
fep(0.5) 0.0000 0.0017 0.0043 0.0113 0.0374 0.6954
fep(0.75) 0.0000 0.0000 0.0009 0.0113 0.0321 0.6710
fep(0.9) 0.0000 0.0009 0.0009 0.0052 0.0261 0.6536
fep(0.99) 0.0000 0.0000 0.0000 0.0017 0.0096 0.5474

LSCFG — 0.2141 0.4256 0.4744 0.4900 0.9408 0.9843
mep(0.5) 0.2141 0.4256 0.4744 0.4900 0.9408 0.9843
mep(0.75) 0.2141 0.4248 0.4726 0.4892 0.9399 0.9843
mep(0.9) 0.2089 0.4274 0.4761 0.4926 0.9399 0.9843
mep(0.99) 0.1941 0.4221 0.4761 0.4892 0.9452 0.9852
fep(0.5) 0.2124 0.4248 0.4726 0.4883 0.9417 0.9852
fep(0.75) 0.1898 0.4213 0.4674 0.4831 0.9408 0.9843
fep(0.9) 0.1314 0.4013 0.4518 0.4726 0.9321 0.9869
fep(0.99) 0.0209 0.3029 0.3725 0.4186 0.8529 0.9809

(a) CSPfreq values (for selection principle MP struct.).

Shape Level
Approach Errors

0 1 2 3 4 5

SCFG — 0.0000 0.0026 0.0052 0.0131 0.0357 0.7128
mep(0.5) 0.0000 0.0009 0.0026 0.0122 0.0305 0.7180
mep(0.75) 0.0000 0.0017 0.0043 0.0113 0.0331 0.7067
mep(0.9) 0.0000 0.0009 0.0017 0.0078 0.0357 0.7215
mep(0.99) 0.0000 0.0026 0.0044 0.0105 0.0235 0.6902
fep(0.5) 0.0000 0.0017 0.0043 0.0113 0.0383 0.6971
fep(0.75) 0.0000 0.0000 0.0009 0.0113 0.0296 0.6745
fep(0.9) 0.0000 0.0000 0.0000 0.0035 0.0261 0.6631
fep(0.99) 0.0000 0.0000 0.0000 0.0035 0.0200 0.5439

LSCFG — 0.2002 0.4256 0.4700 0.4866 0.9417 0.9861
mep(0.5) 0.1332 0.3960 0.4439 0.4587 0.9434 0.9869
mep(0.75) 0.0923 0.3847 0.4448 0.4639 0.9356 0.9861
mep(0.9) 0.0575 0.3508 0.4135 0.4352 0.9373 0.9887
mep(0.99) 0.0365 0.3630 0.4308 0.4491 0.9304 0.9861
fep(0.5) 0.0801 0.3847 0.4404 0.4561 0.9400 0.9861
fep(0.75) 0.0339 0.3630 0.4230 0.4430 0.9208 0.9843
fep(0.9) 0.0131 0.3160 0.3743 0.4204 0.8442 0.9843
fep(0.99) 0.0035 0.1497 0.2106 0.3325 0.5440 0.9730

(b) CSPfreq values (for selection principle MF struct.).
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Shape Level
Approach Errors

0 1 2 3 4 5

SCFG — 0.0000 0.0000 0.0000 0.0000 0.0261 0.3821
mep(0.5) 0.0000 0.0000 0.0000 0.0000 0.0209 0.3698
mep(0.75) 0.0000 0.0000 0.0000 0.0000 0.0209 0.3559
mep(0.9) 0.0000 0.0000 0.0000 0.0000 0.0131 0.3290
mep(0.99) 0.0000 0.0000 0.0000 0.0000 0.0122 0.3003
fep(0.5) 0.0000 0.0000 0.0000 0.0000 0.0252 0.3438
fep(0.75) 0.0000 0.0000 0.0000 0.0000 0.0139 0.2463
fep(0.9) 0.0000 0.0000 0.0000 0.0000 0.0070 0.1619
fep(0.99) 0.0000 0.0000 0.0000 0.0000 0.0026 0.0444

LSCFG — 0.1062 0.3891 0.4291 0.4378 0.9051 0.9835
mep(0.5) 0.1010 0.3751 0.4134 0.4239 0.8921 0.9782
mep(0.75) 0.0749 0.3647 0.4047 0.4282 0.8894 0.9774
mep(0.9) 0.0470 0.3290 0.3769 0.3917 0.8834 0.9817
mep(0.99) 0.0392 0.3429 0.3986 0.4213 0.8712 0.9791
fep(0.5) 0.0740 0.3839 0.4239 0.4387 0.8877 0.9791
fep(0.75) 0.0287 0.3516 0.3943 0.4134 0.8616 0.9713
fep(0.9) 0.0139 0.2968 0.3490 0.3855 0.8120 0.9739
fep(0.99) 0.0017 0.1358 0.1863 0.2942 0.4970 0.9634

(c) CSPfreq values (for selection principle MEA struct.).

Shape Level
Approach Errors

0 1 2 3 4 5

SCFG — 0.0000 0.0000 0.0000 0.0000 0.0104 0.1097
mep(0.5) 0.0000 0.0000 0.0000 0.0000 0.0104 0.1062
mep(0.75) 0.0000 0.0000 0.0000 0.0000 0.0078 0.0923
mep(0.9) 0.0000 0.0000 0.0000 0.0000 0.0044 0.0896
mep(0.99) 0.0000 0.0000 0.0000 0.0000 0.0078 0.0827
fep(0.5) 0.0000 0.0000 0.0000 0.0000 0.0061 0.0932
fep(0.75) 0.0000 0.0000 0.0000 0.0000 0.0026 0.0696
fep(0.9) 0.0000 0.0000 0.0000 0.0000 0.0017 0.0479
fep(0.99) 0.0000 0.0000 0.0000 0.0000 0.0009 0.0078

LSCFG — 0.0966 0.2916 0.3238 0.3316 0.8703 0.9686
mep(0.5) 0.0879 0.3142 0.3516 0.3621 0.8625 0.9686
mep(0.75) 0.0644 0.3029 0.3403 0.3551 0.8407 0.9678
mep(0.9) 0.0427 0.2829 0.3194 0.3299 0.8451 0.9678
mep(0.99) 0.0322 0.2924 0.3377 0.3595 0.8294 0.9651
fep(0.5) 0.0662 0.3194 0.3551 0.3638 0.8512 0.9695
fep(0.75) 0.0261 0.2907 0.3255 0.3516 0.8103 0.9608
fep(0.9) 0.0113 0.2411 0.2872 0.3194 0.7650 0.9565
fep(0.99) 0.0017 0.1053 0.1471 0.2219 0.4831 0.9339

(d) CSPfreq values (for selection principle Centroid).
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Shape Level
Approach Errors

0 1 2 3 4 5

SCFG — 0.0000 0.2855 0.4526 0.9852 0.9974 1.0000
mep(0.5) 0.0000 0.2750 0.4256 0.9835 0.9991 1.0000
mep(0.75) 0.0000 0.2367 0.3768 0.9774 0.9982 1.0000
mep(0.9) 0.0000 0.2185 0.3394 0.9696 0.9965 1.0000
mep(0.99) 0.0000 0.1715 0.2977 0.9756 0.9991 1.0000
fep(0.5) 0.0000 0.2237 0.3543 0.9739 0.9991 1.0000
fep(0.75) 0.0000 0.1584 0.2472 0.9574 0.9957 1.0000
fep(0.9) 0.0000 0.0749 0.1497 0.9147 0.9930 1.0000
fep(0.99) 0.0000 0.0174 0.0296 0.6763 0.9608 1.0000

LSCFG — 0.6258 0.8912 0.9295 0.9504 0.9948 1.0000
mep(0.5) 0.6084 0.8947 0.9286 0.9469 0.9948 1.0000
mep(0.75) 0.5727 0.8886 0.9269 0.9521 0.9957 1.0000
mep(0.9) 0.5231 0.8851 0.9252 0.9521 0.9948 1.0000
mep(0.99) 0.4630 0.8894 0.9199 0.9452 0.9939 1.0000
fep(0.5) 0.5553 0.8868 0.9234 0.9504 0.9948 1.0000
fep(0.75) 0.4248 0.8894 0.9225 0.9521 0.9948 1.0000
fep(0.9) 0.2393 0.8720 0.9077 0.9504 0.9957 1.0000
fep(0.99) 0.0279 0.7580 0.8460 0.9617 0.9939 1.0000

(e) CSOfreq values.

Shape Level
Approach Errors

0 1 2 3 4 5

SCFG — 0.0000 0.5432 1.1811 20.640 51.834 573.72
mep(0.5) 0.0000 0.4980 1.0481 19.498 49.614 566.13
mep(0.75) 0.0000 0.3977 0.8859 18.385 47.128 556.17
mep(0.9) 0.0000 0.3655 0.7353 16.331 43.735 544.22
mep(0.99) 0.0000 0.2768 0.5850 14.689 40.062 527.12
fep(0.5) 0.0000 0.3865 0.7982 17.401 45.868 552.82
fep(0.75) 0.0000 0.2481 0.4961 13.092 38.088 507.97
fep(0.9) 0.0000 0.0957 0.2141 8.7270 27.742 443.65
fep(0.99) 0.0000 0.0191 0.0348 2.9269 12.064 285.20

LSCFG — 42.599 347.33 421.29 455.78 881.11 983.88
mep(0.5) 38.324 346.45 419.23 455.04 875.92 983.26
mep(0.75) 31.890 338.26 411.90 451.93 865.28 983.84
mep(0.9) 23.180 316.85 389.48 434.11 853.47 984.36
mep(0.99) 17.873 312.64 386.51 436.20 832.96 983.29
fep(0.5) 29.194 342.28 413.57 454.07 861.46 983.23
fep(0.75) 14.829 304.49 376.16 430.85 811.76 980.03
fep(0.9) 7.7946 250.74 312.98 391.21 713.62 980.94
fep(0.99) 0.9219 93.694 133.47 260.11 418.20 970.01

(f) CSnum values.
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Shape Level
Approach Errors

0 1 2 3 4 5

SCFG — 999.67 941.77 866.98 336.69 167.10 16.476
mep(0.5) 999.59 943.47 871.08 345.35 171.57 16.766
mep(0.75) 999.61 946.99 878.58 358.32 179.50 17.508
mep(0.9) 999.53 949.65 884.73 372.57 188.32 18.198
mep(0.99) 999.49 953.90 894.21 393.84 201.28 18.948
fep(0.5) 999.53 947.08 879.39 363.20 182.17 17.663
fep(0.75) 999.39 955.12 898.94 414.68 213.39 20.622
fep(0.9) 998.86 962.12 917.65 484.74 258.19 25.174
fep(0.99) 996.37 966.76 933.73 632.35 367.71 40.976

LSCFG — 318.99 24.878 19.283 8.2879 4.4246 1.2088
mep(0.5) 320.15 25.352 19.707 8.3590 4.4759 1.2245
mep(0.75) 318.55 26.391 20.555 8.5940 4.6395 1.2271
mep(0.9) 320.83 27.964 21.834 8.8192 4.7788 1.2219
mep(0.99) 326.13 30.176 23.552 9.1464 4.9729 1.2463
fep(0.5) 321.32 26.848 21.000 8.6976 4.6169 1.2202
fep(0.75) 324.45 31.466 24.610 9.4810 5.1226 1.2445
fep(0.9) 336.16 41.060 32.527 11.069 6.0148 1.2880
fep(0.99) 401.88 84.057 69.689 18.023 9.1200 1.3690

(g) DSnum values.

Table 10: Specific values related to shapes of predictions and sampled structures, obtained from our 5S
rRNA database (by 10-fold cross-validation procedures, using sample size 1000 and minhel = minHL = 1).
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Figure 5: Loop profiles and centroid for E.coli tRNAAla derived according to mep(prob) (thick gray
lines) and fep(prob) (thick dotted darker gray lines) under the assumption of the SCFG (figures on the
left) and LSCFG (figures on the right) model, respectively, where percentage prob = 0.99 has been used
for generating the relative errors. Hplot, Bplot, Iplot, Mplot and Eplot display the probability that an
unpaired base lies in a hairpin, bulge, interior, multi-branched and exterior loop, respectively.
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Figure 6: Loop profiles and centroid for E.coli tRNAAla derived according to mev(prob) (thick gray
lines) and fev(prob) (thick dotted darker gray lines) under the assumption of the SCFG (figures on the
left) and LSCFG (figures on the right) model, respectively, where fixed value prob = 10−9 has been used
for generating the absolute errors. Hplot, Bplot, Iplot, Mplot and Eplot display the probability that an
unpaired base lies in a hairpin, bulge, interior, multi-branched and exterior loop, respectively.
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Figure 7: Loop profiles and centroid derived according to mevwin,+(prob) (thick gray lines) and
fevwin,+(prob) (thick dotted darker gray lines) for the traditional SCFG model, respectively, where
prob = 10−9 and win ∈ {15, 38, 60} (figures from left to right).

43



0 10 20 30 40 50 60 70
0.0

0.2

0.4

0.6

0.8

1.0

Nucleotide Position

P
ro

ba
bi

lit
y

Hplot

0 10 20 30 40 50 60 70
0.0

0.2

0.4

0.6

0.8

1.0

Nucleotide Position

P
ro

ba
bi

lit
y

Hplot

0 10 20 30 40 50 60 70
0.0

0.2

0.4

0.6

0.8

1.0

Nucleotide Position

P
ro

ba
bi

lit
y

Hplot

0 10 20 30 40 50 60 70
0.0

0.2

0.4

0.6

0.8

1.0

Nucleotide Position

P
ro

ba
bi

lit
y

Bplot

0 10 20 30 40 50 60 70
0.0

0.2

0.4

0.6

0.8

1.0

Nucleotide Position

P
ro

ba
bi

lit
y

Bplot

0 10 20 30 40 50 60 70
0.0

0.2

0.4

0.6

0.8

1.0

Nucleotide Position

P
ro

ba
bi

lit
y

Bplot

0 10 20 30 40 50 60 70
0.0

0.2

0.4

0.6

0.8

1.0

Nucleotide Position

P
ro

ba
bi

lit
y

Iplot

0 10 20 30 40 50 60 70
0.0

0.2

0.4

0.6

0.8

1.0

Nucleotide Position

P
ro

ba
bi

lit
y

Iplot

0 10 20 30 40 50 60 70
0.0

0.2

0.4

0.6

0.8

1.0

Nucleotide Position

P
ro

ba
bi

lit
y

Iplot

0 10 20 30 40 50 60 70
0.0

0.2

0.4

0.6

0.8

1.0

Nucleotide Position

P
ro

ba
bi

lit
y

Mplot

0 10 20 30 40 50 60 70
0.0

0.2

0.4

0.6

0.8

1.0

Nucleotide Position

P
ro

ba
bi

lit
y

Mplot

0 10 20 30 40 50 60 70
0.0

0.2

0.4

0.6

0.8

1.0

Nucleotide Position

P
ro

ba
bi

lit
y

Mplot

0 10 20 30 40 50 60 70
0.0

0.2

0.4

0.6

0.8

1.0

Nucleotide Position

P
ro

ba
bi

lit
y

Eplot

0 10 20 30 40 50 60 70
0.0

0.2

0.4

0.6

0.8

1.0

Nucleotide Position

P
ro

ba
bi

lit
y

Eplot

0 10 20 30 40 50 60 70
0.0

0.2

0.4

0.6

0.8

1.0

Nucleotide Position

P
ro

ba
bi

lit
y

Eplot

Figure 8: Loop profiles and centroid derived according to mevwin,+(prob) (thick gray lines) and
fevwin,+(prob) (thick dotted darker gray lines) for the LSCFG model, respectively, where prob = 10−9

and win ∈ {15, 38, 60} (figures from left to right).
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Figure 9: Loop profiles and centroid derived according to mevwin,−(prob) (thick gray lines) and
fevwin,−(prob) (thick dotted darker gray lines) for the traditional SCFG model, respectively, where
prob = 10−9 and win ∈ {15, 38, 60} (figures from left to right).
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Figure 10: Loop profiles and centroid derived according to mevwin,−(prob) (thick gray lines) and
fevwin,−(prob) (thick dotted darker gray lines) for the LSCFG model, respectively, where prob = 10−9

and win ∈ {15, 38, 60} (figures from left to right).
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Figure 11: Loop profiles and centroid derived according to mevI(prob) (thick gray lines) and fevI(prob)
(thick dotted darker gray lines) for the traditional SCFG model, respectively, where prob = 10−9 and
I ∈ {{T}, {C}, {A}} (figures from left to right).
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Figure 12: Loop profiles and centroid derived according to mevI(prob) (thick gray lines) and fevI(prob)
(thick dotted darker gray lines) for the traditional SCFG model, respectively, where prob = 10−9 and
I ∈ {{P}, {F}, {G}} (figures from left to right).
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Figure 13: Loop profiles and centroid derived according to mevI(prob) (thick gray lines) and fevI(prob)
(thick dotted darker gray lines) for the traditional SCFG model, respectively, where prob = 10−9 and
I ∈ {{M}, {O}, {N}} (figures from left to right).
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Figure 14: Loop profiles and centroid derived according to mevI(prob) (thick gray lines) and fevI(prob)
(thick dotted darker gray lines) for the traditional SCFG model, respectively, where prob = 10−9 and
I ∈ {{B}, {U}} (figures from left to right).
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Figure 15: Loop profiles and centroid derived according to mevI(prob) (thick gray lines) and fevI(prob)
(thick dotted darker gray lines) for the LSCFG model, respectively, where prob = 10−9 and I ∈
{{T}, {C}, {A}} (figures from left to right).
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Figure 16: Loop profiles and centroid derived according to mevI(prob) (thick gray lines) and fevI(prob)
(thick dotted darker gray lines) for the LSCFG model, respectively, where prob = 10−9 and I ∈
{{P}, {F}, {G}} (figures from left to right).
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Figure 17: Loop profiles and centroid derived according to mevI(prob) (thick gray lines) and fevI(prob)
(thick dotted darker gray lines) for the LSCFG model, respectively, where prob = 10−9 and I ∈
{{M}, {O}, {N}} (figures from left to right).
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Figure 18: Loop profiles and centroid derived according to mevI(prob) (thick gray lines) and fevI(prob)
(thick dotted darker gray lines) for the LSCFG model, respectively, where prob = 10−9 and I ∈
{{B}, {U}} (figures from left to right).
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Figure 19: Comparison of the (areas under) ROC curves obtained for our tRNA database, derived without
disturbances (top line) and by considering random relative disturbances according to mep(0.5), mep(0.99),
fep(0.5) and fep(0.99) (from top to bottom line) under the assumption of the traditional SCFG model
(for minhel = 1 and minHL = 1). For each preprocessing variant, corresponding ROC curves are shown
for prediction principle MEA structure (figure on the left) and centroid (figure on the right), respectively.
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Figure 20: Results corresponding to those of Figure 19, derived under the assumption of the LSCFG
model.
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Figure 21: Comparison of the (areas under) ROC curves obtained for our 5S rRNA database, derived
without disturbances (top line) and by considering random relative disturbances according to mep(0.5),
mep(0.99), fep(0.5) and fep(0.99) (from top to bottom line) under the assumption of the traditional
SCFG model (for minhel = 1 and minHL = 1). For each preprocessing variant, corresponding ROC
curves are shown for prediction principle MEA structure (figure on the left) and centroid (figure on the
right), respectively.
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Figure 22: Results corresponding to those of Figure 21, derived under the assumption of the LSCFG
model.
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