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Abstract

The string matching problem, i.e. the task of finding all occurrences of one string as a sub-
string of another one, is a fundamental problem in computer science. Recently, this problem
received a great deal of attention due to numerous applications in computational biology. In
this paper we present a modified version of Horspool’s string matching algorithm using the
probabilities of the different symbols for speeding up. We show that the modified algorithm
has a linear average running time; a precise asymptotical representation of the running time
will be proven. A comparison of the average running time of the modified algorithm with the
well-known results for the original method shows that a substantial speed up for most of the
symbol distributions has been achieved. Finally, we show that the distribution of the symbols
can be approximated to a high precision using a random sample of sublinear size.

1 Introduction

In a lot of applications it is necessary to find one string being a substring of another one, e.g. when
a word in a text needs to be changed or deleted. In computer science this task is called the string
matching problem. Quite a number of algorithms for solving this problem are well-known (for a
detailed presentation see [ChL04]). Since in computational biology a lot of objects are modeled
as strings (nucleotide sequences of DNA/RNA, amino acid sequences of proteins,...), the problem
has recently attracted new attention. As the size of these objects often is rather large, highly
efficient string matching algorithms are needed to build software-tools that provide results within
an appropriate time.

In this paper we present a modified version of Horspool’s string matching algorithm [Hor80]
making use of the probabilities of the symbols within the string that has to be searched for a
substring. Provided that we have different probabilities for different symbols like for natural
languages or within biological data1, it is possible to decrease the number of comparisons needed
to figure out that a string does not occur as a substring in a certain position. Consequently, we will
obtain a faster string matching algorithm. This fact is proven by a precise average-case analysis
of the method. A quite similar modification of the Boyer-Moore algorithm [Boy77] which is called
optimal mismatch algorithm has been published by Sunday in [Sun90]. In his article Sunday
presents simulations based on the man pages files of a unix system to give empirical evidence for
the advantages of his modification.

The present paper is structured as follows: In section 2 we give a formal definition of the
string matching problem and describe algorithmic solutions like a naive algorithm or the Horspool
algorithm. In section 3 we present the modified algorithm in detail and perform an average-case
analysis for its running time. Based on this analysis we compare the new method with the original

1For instance, the four different nucleotides in tRNA and rRNA are non-uniformly distributed [CKKS05], this
also holds for many DNA sequences (see section 4). In addition, we usually observe non-uniform dinucleotide
frequencies [ClB00].
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s:=0;
while s<=n-m do

j:=m;
while (j>0) and (P[j]=T[s+j]) do j:=j-1;
if j=0 then

print("Pattern occurs at position",s+m);
s:=s+1;

Figure 1: The naive string matching algorithm.

algorithm of Horspool. In Section 4 we present some simulation results, section 5 contains the
concluding remarks. In the appendix we discuss the possibility of approximating the symbol
distribution to a high precision using a random sample of sublinear size only.

2 The String Matching Problem

Suppose we have a given alphabet Σ, a text T ∈ Σn and a pattern P ∈ Σm, m,n ∈ N, m ≤ n.
Then the string matching problem is to find all occurrences of P in T , i.e. all i ∈ N with (∃u ∈
Σ� ∧ ∃v ∈ Σn−i)(T = uPv). If T = uPv with v ∈ Σn−i holds, we say P occurs at position i,
i.e. the position of an occurrence is defined relative to the location of P ’s rightmost character
within T . We use P [i] (resp. T [i]) to denote the i-th symbol of P (resp. T ); the notation P [i..j]
(resp. T [i..j]), i ≤ j, is used to represent the substring of P (resp. T ) which starts with the i-th
and ends with the j-th symbol of P (resp. T ).

The most apparent algorithmic solution to the string matching problem is presented in Figure 1.
This naive algorithm considers all possible positions m,m + 1, . . . , n and compares the symbols
of the pattern to the corresponding symbols of the text one by one, each time starting with the
rightmost symbol of P . This obviously leads to a worst-case running time in Θ((n − m + 1) · m),
e.g. for Σ = {A}, T = An, P = Am. This example can also be used to explain the weakness of
the algorithm: After we have found the occurrence of P at position m, the algorithm considers
position m + 1. At this position only the comparison of P [m] and T [m + 1] is necessary; knowing
P and knowing that P occurs at position m we can conclude that P [1..m − 1] = T [2..m] holds.

More sophisticated algorithms like the Knuth-Morris-Pratt (KMP) algorithm [KMP77] make
use of this observation. In a preprocessing step they extract all the information on the pattern
which is needed to avoid multiple comparisons of symbols, thus, yielding a linear running time for
recognizing all occurrences. In the case of the KMP algorithm, the preprocessing phase is linear
in the length of the pattern using an amortized analysis such that the worst-case running time of
the complete algorithm is in O(m + n) and therefore optimal. Surprisingly, the naive algorithm is
nearly as good as the KMP algorithm on the average [Sed92]. Note, that in contrast to our naive
algorithm, the KMP algorithm scans the pattern from left to right.

A third class of algorithms exists being much faster than the KMP algorithm (on the average)
but which has the same poor worst-case behavior as the naive algorithm. An example is the
Hoorspool algorithm which makes use of the following idea to speed up the algorithm presented
in Figure 1: Suppose that T [j] = A holds and that P [i] �= A, 1 ≤ i ≤ m. Then, when checking
position j for the occurrence of P , a mismatch is observed by the first comparison. In this situation
it makes no sense to consider any of the positions j+1, j+2, . . . , j+m−1 since in all cases T [j] = A
cannot agree with the corresponding symbol of the pattern (P contains no symbol A). Thus, in
order to avoid those preassigned mismatches, the algorithm proceeds as follows: After finishing
the comparison of P and T at any position k (either because a mismatch has been observed or
because the pattern has been found) it will not consider a position for which T [k] will be compared
to a symbol of P which differs from T [k]. This behavior is implemented by changing s:=s+1 of
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s:=0;
while s<=n-m do

j:=m;
while (j>0) and (P[j]=T[s+j]) do j:=j-1;
if j=0 then

print("Pattern occurs at position",s+m);
s:=s+d(T[s+m]);

Figure 2: The Horspool algorithm.

the naive algorithm into s:=s+d(T[s+m]) with

d(x) := min
1≤i≤m

{i | i = m ∨ P [m − i] = x}, x ∈ Σ.

The function d is called the bad character heuristic which is computed in a preprocessing step in
time Θ(m).

Example: P = ACACGGAC → d(A) = 1, d(C) = 4, d(G) = 2, d(U) = 8.

T = · · ·AAUGCUUAGACUCAGG · · ·............................

d(C) = 4

ACACGGAC

ACACGGAC....................

An implementation of the Horspool algorithm (without the preprocessing phase) is given in Fig-
ure 2.

3 The Modified Horspool Algorithm

In this section we describe a modified version of the Horspool algorithm and show its improved
average running time.

3.1 The Algorithm

Like for Sunday’s Optimal Mismatch algorithm, the idea of the modified algorithm considered here
is to change the order in which the symbols of the pattern are compared to the symbols of the text
such that the probability for a mismatch is maximized. Assuming that we know the distribution
of the symbols in the text, we compare least probable symbols first in order to maximize this
probability. To proceed this way it is necessary to perform an additional preprocessing step which
will be described next.

For the modified algorithm we use an array v:array[1..m] of integer such that v[k]=i
implies that P [i] is compared to the corresponding symbol of the text in k-th order for any
position considered. As already mentioned, we assume that the probability distribution of the
symbols in the text is known; we will use the relative number of occurrences of the different
symbols to represent these probabilities. For this purpose we use the array

w:array[’a’..’Z’] of record
number:integer;
locations:pointer to block;

end;

type block = record
position:integer;
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next:pointer to block;
end;

Here, the notation array[’a’..’Z’] is used to represent an array whose elements can be ad-
dressed using the symbols in Σ; locations is used to build up a list of all occurrences of the
corresponding symbol in P . At the beginning of the preprocessing, all the pointers locations of
array w are set to NIL (running time O(|Σ|)); we will see that all the pointers of w are NIL again
after the preprocessing such that subsequent searches don’t need to re-initialize the data structure.
The first step is to run through P from left to right, inserting each symbol P [i] with its relative
number of occurrences as its priority into a min-heap. Using well-known implementations for a
min-heap (see e.g. [CLR90]) results in a running time proportional to log(m) for each symbol.
Furthermore, the occurrence of P [i] is registered within the list locations of w[P[i]], setting
position:=i in a new block which is created at the head of the list locations. This can be done
in constant time per symbol leading to an overall running time for this phase in O(m log(m)).
In a second phase we use the min-heap to set the values of v according to our needs. For this
purpose, we delete the smallest element stored in the heap, say symbol a. If a occurs l times in
P , then the list locations of w[a] contains l elements which are used to compute v[1] to v[l];
we set2 v[i]:=w[a].locations^.position for i from 1 to l, deleting each time the correspond-
ing block from the head of the list. We have processed P from left to right, inserting elements
at the head of the lists, which implies that v[1] corresponds to the rightmost occurrence of the
least probable symbol, v[2] to the second rightmost occurrence of the least probable symbol (if
it exists) and so on. In this way our algorithm will process all the occurrences of a symbol within
the pattern from right to left. We continue in exactly the same way, deleting elements from the
min-heap and processing their lists locations in order to set up array v. When the heap is empty,
we are done with our preprocessing. Each symbol of the pattern will be deleted from one of the
lists (in constant time) exactly once. Thus the resulting running time is in O(m). The deletion of
the smallest element stored in a min-heap can be implemented in log(s) time for s the size of the
heap; therefore the overall running-time of both preprocessing phases is on O(|Σ| + m log(m)).

Remark: It is possible to speed up this preprocessing by using a linear sorting algorithm like
distribution counting. However, in order to apply this algorithm, we need to know the order of
all symbols sorted with respect to their relative number of occurrences. If we work with a fixed
distribution of the symbols, e.g. when processing natural languages with known probabilities for
the letters, this order can be computed once and the distribution counting would improve the
running time of our preprocessing. However, for realistic values of m, the advantage obtained is
marginal. In cases of an unknown distribution of the symbols (see section 6), it makes no sense
to sort the entire alphabet in order to slightly speed up the construction of array v.

Changing the fourth line of the algorithm presented in Figure 2 into

while (j>0) and (P[v[j]]=T[s+v[j]]) do j:=j-1;

results in an implementation of the modified method. We will investigate this algorithm in detail
in order to see if it is faster than the original one and to quantify the influence of the symbol
distribution to its running time.

3.2 An Average-Case Analysis

When designing a software program we usually have several algorithms at hand which we can
use to solve those fundamental problems (like searching or sorting) that are part of the tasks our
program has to perform. We may choose the algorithms according to the complexity of their
coding, preferring the easiest implementation possible. However, we should use the fastest of the
algorithms for the key functions of our program in order to get an efficient solution. When con-
sidering the string matching problem and the three solutions presented in this paper, it makes

2Here, p^ is used to represent the variable addressed by pointer p.
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sense to use the number of comparisons of symbols in order to evaluate the algorithm’s running
time. In a worst-case scenario, i.e. when considering only the input which results in the worst
possible running time, all three algorithms have the same bad behavior; for T = An and P = Am

we perform (n − m + 1) · m comparisons since d(A) = 1 holds.
We will perform an average-case analysis along the lines of [MSR96] in order to see which algo-
rithm performs best under a typical (average) input. In this way it will be possible to proof that
the modified algorithm is faster than the original one for the vast majority of symbol distributions.

For the analysis we assume that we are given a fixed pattern P of length m and a random text
T of length n where a random text is generated according to a multinomial distribution, i.e. at
each position of T symbol x ∈ Σ occurs independently of the other positions with probability πx.
Of course, this model is rather unrealistic with respect to most applications but it is typically
the first one to consider for an average-case analysis of string matching algorithms because even
for this simple model the analysis leads to a deeper understanding of the algorithm’s benefits,
disadvantages and of the algorithm itself.

3.3 The Number of Positions Considered

By using the bad character heuristic, the Horspool algorithm does not consider all positions of
the text; in many cases the pattern is shifted over at least by one position due to a preassigned
mismatch. Since the original and the modified algorithm use the same heuristic for relocating
the pattern, both algorithms consider the same positions for a given input. As a consequence,
well-known results concerning the number of positions considered by the Horspool algorithm can
be applied to our modification. The corresponding results from [MSR96] will be recalled in the
sequel.

Theorem 1 Let fP (z) :=
∑

a∈Σ πazd(a), μP := 1
f ′(1) and σ2

P := f ′(1)+f ′′(1)−(f ′(1))2

(f ′(1))3 , f ′ resp. f ′′

the first resp. second derivative of f . For a fixed pattern P the original and the modified Horspool
algorithm consider the same number of positions H

[P ]
n when searching for P in a random text of

size n. We have
H

[P ]
n − μP n√

n

D→ N (0, σ2
P ).

Moreover,
E[H [P

n ] = μP n + O(1), and

Var[H [P ]
n ] = σ2

P n + O(1).

As usual, N (μ, σ2) is used to represent the normal distribution with mean μ and variance σ2; D→
denotes the convergence in distribution.

3.4 The Average Running-Time

Let Xj denote the random variable describing the number of comparisons made when position j of
the text is considered by the modified algorithm. Then for 11j an indicator which is one if position
j is actually considered by the algorithm3, zero otherwise, the (average) number of comparisons
C

[P ]
n made by the modified algorithm is given by

C [P ]
n =

n∑
j=m

Xj11j .

This is a sum of dependent random variables since only position m (the first position) is considered
in all cases. If positions j > m are considered depends on which positions < j are considered and

3Since d(x) may have values larger than 1, it is possible that some positions of the text are not considered by
the algorithm.
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which value of d is applied. Nevertheless, we can obtain precise results for the expected number of
comparisons by direct manipulation of this formula. First we use Xj = Xj11j +Xj(1−11j) in order
to split the sum into two. Then dividing both sides of the equation by n and taking expectations
yields

E

[
1
n

C [P ]
n

]
=

1
n

n∑
j=m

E[Xj ] − 1
n

n∑
j=m

E[Xj(1 − 11j)]. (1)

This representation has a nice interpretation: The first sum is the expected number of comparisons
performed by the naive algorithm when comparisons are made in the optimized order of our
modification. The second sum represents the number of comparisons which we saved by using
the bad character heuristic since (1 − 11j) is one if and only if position j is not considered by our
algorithm. Lets take a look at the first sum. Since all the Xj are identically distributed for fixed
P , we find 1

n

∑n
j=m E[Xj ] = 1

n (n−m + 1)E[Xm] ∼ E[Xm]. Here we make the realistic assumption
that n is much larger than m. But how does E[Xm] behave? Let P[j] denote the symbol in P
with the j largest probability4 (i.e. P[m] is the symbol which is compared first to the text) and
π[j] := πP[j] . Then we obviously have

E[Xm] = 1(1 − π[m]) + 2π[m](1 − π[m−1]) + . . .

+(m − 1)π[m] · · ·π[3](1 − π[2]) + mπ[m] · · ·π[2]

= 1 + π[m] + π[m]π[m−1] + . . . + π[m]π[m−1] · · ·π[2].

Introducing the notation

tj :=

⎧⎨
⎩

1 if j = 1,

π[m] · · ·π[m−j+2] if 2 ≤ j ≤ m,

leads to

E[Xm] =
m∑

j=1

tj .

Now, we have to consider the second sum, i.e. positions which are not considered by the algorithm
since P is shifted over them by means of d. The following graphic describes the situation where
position j is skipped. For minimal Δ, position j − Δ is the last position left of position j which
is considered by the algorithm; the bad character heuristic implies a shift larger than Δ, thus
position j is skipped:

Δ

�����
������
�����
�������
�����
������
����

�������������������� ������
������
�����
��� j

A

C C U G U

Δ minimal· · · · · ·
d(A)

We can use this view in order to find a representation for (1 − 11j). First of all, in a random
text position j − Δ may be any of the symbols in Σ. Thus we have to sum all the corresponding
possibilities (to sum over all x ∈ Σ). For a fixed symbol x in the text, the bad character heuristic
d(x) must be larger than Δ since otherwise P would not be shifted over position j. Thus Δ may
have the values 1 to d(x) − 1. Finally, we must assure that position j − Δ is considered by the
algorithms; this can be expressed using 11j−Δ. All in all this leads to

(1 − 11j) =
∑
x∈Σ

d(x)−1∑
Δ=1

11j−ΔδT [j−Δ]=x,

4This definition of P[j] is only sound if all symbols of P are different. In cases where this is not fulfilled, P[j] is
meant to be the symbol in P which is compared at (m − j + 1)-st rank to the text.
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P

πA = 4
10 , πC = 3

10 ,
πG = 2

10 , πU = 1
10

πA = 10
34 , πC = 9

34 ,
πG = 8

34 , πU = 7
34

AAAAA 0.54955 . . . 0.39920 . . .
AAACG 0.52772 . . . 0.45682 . . .
ACACG 0.52098 . . . 0.45506 . . .
UCACG 0.46374 . . . 0.47236 . . .
UCCCG 0.32735 . . . 0.38235 . . .
UCGCG 0.38023 . . . 0.44801 . . .
UCCGG 0.36876 . . . 0.44471 . . .
UUUGG 0.30710 . . . 0.41833 . . .
UUUUU 0.24395 . . . 0.31380 . . .

Table 1: Some numerical values of ρP .

where δT [j−Δ]=x is used to enforce symbol x at position j −Δ of T . Inserting this into the second
sum of (1) leads to

n∑
j=m

E[Xj(1 − 11j)] =
n∑

j=m

∑
x∈Σ

πx

d(x)−1∑
Δ=1

Pr[11j−Δ = 1]E[Xj | T [j − Δ] = x ∧ 11j−Δ = 1].

For Δ < d(x) the conditional expectation E[Xj | T [j − Δ] = x ∧ 11j−Δ = 1] can be written as

E[Xj | T [j − Δ] = x ∧ 11j−Δ = 1] =
k(Δ,P )∑

i=1

ti,

where k(Δ, P ) − 1 denotes the number of symbols of P that are compared to the text prior to
symbol P [m − Δ] by the modified algorithm. This equation holds because of the preassigned
mismatch which at position j exists for symbol P [m − Δ] (position j is skipped by the bad
character heuristic d(T [j − Δ])) such that the comparison of pattern and text is finished after
P [m−Δ] has been considered. Thus it only remains to find a representation for Pr[11j−Δ = 1]. Let
ϕ =

∑
x∈Σ πxd(x) be the average bad character heuristic, i.e. assuming large texts (n → ∞) the

average step size used to slide P over T . Then the algorithms obviously only considered every ϕ’s
position. Consequently, (in accordance with Theorem 1) the probability for an arbitrary position
to be considered is ϕ−1 := μP . Collecting all the partial results presented we have proven:

Theorem 2 The expected number of comparisons performed by the modified Horspool-algorithm
for pattern P of length m and for a random text T of length n is asymptotically given by

n · μP

∑
x∈Σ

πx

⎛
⎝d(x)

m∑
j=1

tj −
d(x)−1∑
Δ=1

k(Δ,P )∑
i=1

ti

⎞
⎠

︸ ︷︷ ︸
=:ρP

,

n → ∞.

Thus, we observe a linear number of comparisons where the fraction ρP of symbols considered
depends on P and the distribution of the symbols. Table 1 shows some examples for ρ for Σ =
{A,C,G,U}. A decreased probability for the pattern leads in most cases to a decreased value for
ρP . However, there are exceptions from this rule like e.g. the patterns UCCCG and UCGCG.
Here the additional symbol G in the middle of P changes the bad character heuristic from d(G) = 5
to d(G) = 2 and the increased probability for a mismatch (symbol G is less likely than symbol C)
cannot compensate the resulting decrease for ϕ.
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Note that the representation for the expected number of comparisons given in Theorem 2
holds for any modification to the Horspool algorithm concerning only changes to the order of
comparisons; only notation tj has to be adopted to the algorithm in question. For example,
setting tj = πm · · ·πm−j+2 for 2 ≤ j ≤ m and k(Δ, P ) = Δ + 1 leads to the expected number of
comparisons made by the original algorithm.

In order to decide whether or not our modification of the Horspool algorithm leads to an
improved running time, we can compare the result of Theorem 2 with corresponding results for
the original algorithm [MSR96]. In doing so, we observe that both algorithms are incomparable
with respect to the average number of comparisons made for searching a fixed pattern in a random
text. For the different probability distributions we always find patterns for which one algorithm is
faster and patterns for which the other algorithm needs fewer comparisons. We can work around
this dilemma by changing our model, searching now for a random pattern of fixed size m. This
means to consider n ·∑P∈Σm πP ρP . In order to get an appropriate representation for the resulting
average number of comparisons we need to get rid of the notations μP , k(Δ, P ), d(x) and tj within
the representation of ρP given in Theorem 2. In general this is not an easy task but for Σ = {0, 1}
we can proceed in the following way. Assuming without loss of generality that π1 > π0 holds, we
can conclude that the modified algorithm will first compare all the zeros of the pattern with the
text before it processes the first one. Therefore, partitioning the set of all patterns in Σm into
those consisting of k zeros, we can conclude that

m∑
j=1

tj = 1 +
k+1∑
j=2

πj−1
0 + πk

0

m∑
j=k+1

π
j−(k+1)
1

=
πk+1

0 − 1
π0 − 1

+ πk
0

πm−k
1 − π1

π1 − 1

holds (this result has been used for the lengthy computation mentioned below). To continue it
is advantageous to partition the set of all patterns according to their d(0) and d(1) values. Let
P (α, β) denote the set of all P ∈ Σm with d(0) = α and d(1) = β. Then obviously we have

n ·
∑

P∈Σm

πP ρP = n ·
⎛
⎝ m∑

α=2

∑
P∈P (α,1)

πP ρP +
m∑

β=2

∑
P∈P (1,β)

πP ρP

⎞
⎠ .

For P ∈ P (α, 1) (resp. P ∈ P (1, β)) we have μ−1
P = π0α+π1 (resp. μ−1

P = π0+π1β). Furthermore,
a pattern with α = 1 and β = k (resp. α = k and β = 1) will be of the shape {0, 1}�1 0 · · · 0︸ ︷︷ ︸

k−1

{0, 1}

(resp. {0, 1}�0 1 · · · 1︸ ︷︷ ︸
k−1

{0, 1}). Thus we can conclude that

k(Δ, P ) =

⎧⎪⎪⎨
⎪⎪⎩

Δ P ∈ P (1, β) and Pm = 1, Δ ∈ {1, 2, . . . , β − 1},
Δ + 1 P ∈ (1, β) and Pm = 0, Δ ∈ {1, 2, . . . , β − 1},
#0 + Δ P ∈ P (α, 1) and Pm = 0, Δ ∈ {1, 2, . . . , α − 1},
#0 + Δ + 1 P ∈ P (α, 1) and Pm = 1, Δ ∈ {1, 2, . . . , α − 1},

holds, where #0 is used to denote the number of zeros in P . These formulæ can be used to get
rid of all the special notations in our representation of ρP . Performing a lengthy but straight
forward computation yields the following representation for the expected number of comparisons
performed by the modified algorithms for a random text of size n and a random pattern of size m
(p := π0):

n ·
[

m−1∑
α=2

(1 − p)α−1
m−α−1∑

j=0

(
m − α − 1

j

)
pj(1 − p)m−α−1−jf1(α, j,m, p)

+
m−1∑
β=2

pβ−1

m−β−1∑
j=0

(
m − β − 1

j

)
pj(1 − p)m−β−1−jf2(β, j,m, p) (2)
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+
1

p(p − 1)2

(
2(1 − p)m+1((1 − p)3 + p)

1 + (m − 1)p
− (1 − p)2m(2 + (m − 2)p)(1 + 2(p − 1)p)

1 + (m − 1)p

−pm(1 − p2(2 + (p − 2)p) + (p − 1)pm(p2 − mp + m + 1))
m(p − 1) − p

)]

with

f1(α, j,m, p) =
1

1 + (α − 1)p

(
(1 − p)−j−2p((1 − p)j+1+pj((1 − p)m(p − 1 − αp)(1+2p(p − 1))

−(1 − p)j+1(1 + (1 − p)(−3 + (1 − p)α + 2(p − 1)p(p + (1 − p)α − 2)))))

)

and

f2(β, j,m, p) = (1 − p)−β−jpβ+j−2(−(1 − p)β+j(2p − 1)(1 + (p − 1)p) − (1 − p)m+1

×(1 + 2(p − 1)p)) +
(1 + (p − 1)p)(pβ − p) − 1

β(p − 1) − p
.

For any given value for m, this representation simplifies to an easy rational functions, e.g. to

n · p5 − 6 p4 + 6 p3 − 7 p2 + 6 p − 4
(1 + p) (p − 2)

, for m = 2 and

n · 14 p9 − 71 p8 + 99 p7 + 2 p6 − 106 p5 + 111 p4 − 49 p3 + 24 p2 − 24 p + 18
(1 + 2 p) (1 + p) (−3 + 2 p) (p − 2)

for m = 3.

However, neither the representation as a twofold sum nor the rational functions for given values of
m provide a clear view on how the running-time of the algorithm depends on m and p. Therefore,
we compute an appropriate asymptotical representation.

Theorem 3 For Σ = {0, 1} and p := π0 < 1
2 the expected number of comparisons performed by

the modified Horspool-algorithm for a random pattern P of fixed length m and for a random text
T of length n is asymptotically given by

n ·
⎧⎨
⎩

2 if m = 1
2 − 11

2 p + 45
4 p2 + O(p3) if m = 2

m +
(

1
2 + m − 2m2

)
p +
(

13
12 − 7

3m − m2 + 7
3m3
)
p2 + O(p3) if m ≥ 3

,

n → ∞, p → 0.

Proof: We first consider the case m ≥ 3. In order to prove the corresponding asymptotic, we
analyze the sum

m−1∑
α=2

(1 − p)α−1
m−α−1∑

j=0

(
m − α − 1

j

)
pj(1 − p)m−α−1−jf1(α, j,m, p)

+
m−1∑
β=2

pβ−1

m−β−1∑
j=0

(
m − β − 1

j

)
pj(1 − p)m−β−1−jf2(β, j,m, p)

=
m−1∑
α=2

m−α−1∑
j=0

(
m − α − 1

j

)
pj(1 − p)m−α−j−1

[
(1 − p)α−1f1(α, j,m, p) + pα−1f2(α, j,m, p)

]︸ ︷︷ ︸
=:τ

.

Expanding τ we observe terms of three different patterns:

9



1. Terms of the pattern c · pγ(1 − p)δ with the following values for the parameters c, γ and δ:

c = −2, γ = 2j + 2α, δ = m − α − j − 1; c = −3, γ = 2j + 2α − 2, δ = m − α − j − 1;
c = 3, γ = 2j + 2α − 1, δ = m − α − j − 1; c = 1, γ = 2j + 2α − 3, δ = m − α − j − 1;
c = −1, γ = 2j + 2α − 3, δ = 2m − 2α − 2j − 1; c = −4, γ = 2j + 2α − 1, δ = 2m − 2α − 2j − 1;
c = 3, γ = 2j + 2α − 2, δ = 2m − 2α − 2j − 1; c = 2, γ = 2j + 2α, δ = 2m − 2α − 2j − 1;

We number these settings left to right from top to button. Obviously, c · pγ(1 − p)δ =
c ·∑k≥0

(
δ
k

)
(−1)kpk+δ holds. Since j ≥ 0 and α ≥ 2 hold according to our summation,

γ is at least 1 in all cases such that there is no contribution to the constant term in the
expansion of c · pγ(1 − p)δ around p = 0 for any of the eight parameter settings. For the
coefficient at p there is only the choice γ = 1 and k = 0 which is fulfilled by the fourth and
the fifth setting for α = 2 and j = 0. However, with these choices for the parameters both
contributions cancel out. For the coefficient at p2 we can combine k = 0 with γ = 2 and
k = 1 with γ = 1. For k = 0 only the second and the seventh setting might contribute with
α = 2 and j = 0; again the resulting expressions cancel out. For k = 1 the fourth and the
fifth setting contribute for α = 2 and j = 0 giving rise to the expansion

(m − 2)p2 + O(p3).

2. Terms of the pattern c·pγ(1−p)m−α−j−1

αp−α−p with the following values for the parameters c and γ:

c = 1, γ = j + α + 1; c = −1, γ = j + α; c = −1, γ = j + α + 2;
c = 1, γ = j + 2α − 1; c = −1, γ = j + α − 1; c = −1, γ = j + 2α;
c = 1, γ = j + 2α + 1;

Again, we number these settings left to right from top to button. Computing a series
expansion at p = 0 yields

c · pγ(1 − p)m−α−j−1

αp − α − p
= c · pγ ·

(
− 1

α
+

(m − α − j − 2)α + 1
α2

p + O(p2)
)

.

Now α ≥ 2 and j ≥ 0 implies γ ≥ 1 for all the parameter settings such that no contribution
for the constant term exists. The coefficient 1

2 at p is given by the sole possible contribution
which results from the choices α = 2 and j = 0 for the fifth setting. The coefficient at p2 is
made up of several contributions by the fifth setting (α = 2, j = 0) for γ = 1 combined with
(m−α−j−2)α+1

α2 p and by the second (α = 2, j = 0) and fifth (α = 3, j = 0 and α = 2, j = 1)
setting for γ = 2 combined with − 1

α . Note that we have to take the binomial coefficient(
m−α−1

j

)
into account whenever j �= 0 holds. Altogether, this leads to the expansion

1
2
p +
(

13
12

− 1
3
δm,3

)
p2 + O(p3).

Here, δ is Kronecker’s symbol which shows up since α = 3 is impossible for m = 3.

3. Terms of the pattern c·pγ(1−p)δ

1+αp−p with the following values for the parameters c, γ and δ:

c = 1, γ = j + 1, δ = m − j − 4; c = −1, γ = j + 2, δ = m − j − 4;
c = 3, γ = 2j + 2, δ = 2m − 2j − 4; c = 2, γ = 2j + 4, δ = 2m − 2j − 4;
c = −4, γ = 2j + 3, δ = 2m − 2j − 4; c = −1, γ = 2j + 1, δ = 2m − 2j − 4;
c = −α, γ = 2j + 2, δ = 2m − 2j − 4; c = −2α, γ = 2j + 4, δ = 2m − 2j − 4;
c = 2α, γ = 2j + 3, δ = 2m − 2j − 4; c = 2, γ = 2j + 1, δ = m − j − 4;
c = −1, γ = 2j + 1, δ = m − j − 4 + α; c = −18, γ = 2j + 4, δ = m − j − 4;
c = −7, γ = 2j + 3, δ = m − j − 4 + α; c = 17, γ = 2j + 3, δ = m − j − 4;
c = 4, γ = 2j + 2, δ = m − j − 4 + α; c = −9, γ = 2j + 2, δ = m − j − 4;
c = 10, γ = 2j + 5, δ = m − j − 4; c = 6, γ = 2j + 4, δ = m − j − 4 + α;
c = −2, γ = 2j + 6, δ = m − j − 4; c = −2, γ = 2j + 5, δ = m − j − 4 + α;

10



Let ci resp. γi resp. δi be the parameter c resp. γ resp. δ of the i-th parameter setting
numbered from left to right, top to button, 1 ≤ i ≤ 20. With j ≥ 0 all the γi are at least 1
such that the expansion

c · pγ(1 − p)δ

1 + αp − p
= c · pγ · (1 + (1 − α − δ)p + O(p2)

)
implies that we have no constant term. For j = 0 and arbitrary α we observe γk = 1 for
k ∈ {1, 6, 10, 11}. This leads to the contribution

m−1∑
α=2

(
m − α − 1

0

)
(c1 + c6 + c10 + c11)p = (m − 2)p.

There are several possibilities for a contribution to the coefficient at p2. First, we can
combine γ = 1 with (1 − α − δ)p which leads to

m−1∑
α=2

(
m − α − 1

0

) ∑
k∈{1,6,10,11}

ck(1 − α − δk)p2 = 5(m − 2)p2.

Second, we can combine γ = 2 with 1; we find γk = 2 for k ∈ {2, 3, 7, 15, 16} and j = 0
leading to

m−1∑
α=2

(
m − α − 1

0

)
(c2 + c3 + c7 + c15 + c16)p2 =

(
−5

2
m − 1

2
m2 + 7

)
p2.

Additionally, the choice j = 1 implies γ1 = 2 for arbitrary α, which leads to the contribution

m−1∑
α=2

(
m − α − 1

1

)
c1p

2 =
(

1
2
m2 − 5

2
m + 3

)
p2.

Adding all the contributions for the two alternatives γ = 1 and γ = 2 leads to[
5(m − 2) +

(
−5

2
m − 1

2
m2 + 7

)
+
(

1
2
m2 − 5

2
m + 3

)]
p2 = 0.

Therefore we finally find the following expansion of our sum for fixed m ≥ 3 and p → 0:

2m − 3
2

p +
(

13
12

− 1
3
δm,3 + (m − 2)

)
p2 + O(p3).

It remains to determine the contribution of

ν :=
1

p(p − 1)2

(
2(1 − p)m+1((1 − p)3 + p)

1 + (m − 1)p
− (1 − p)2m(2 + (m − 2)p)(1 + 2(p − 1)p)

1 + (m − 1)p

−pm(1 − p2(2 + (p − 2)p) + (p − 1)pm(p2 − mp + m + 1))
m(p − 1) − p

to the expansion at p = 0. For this purpose we proceed in the same way as before. Expanding ν
we observe terms of two different patterns.

1. Terms of the pattern c·pγ(1−p)δ

(p−1)2(1+mp−p) with

c = 2, γ = −1, δ = m; c = −6, γ = 0, δ = m; c = 10, γ = 1, δ = m;
c = −8, γ = 2, δ = m; c = 2, γ = 3, δ = m; c = −2, γ = −1, δ = 2m;
c = −8, γ = 1, δ = 2m; c = 6, γ = 0, δ = 2m; c = −m, γ = 0, δ = 2m;

c = −2m, γ = 2, δ = 2m; c = 2m, γ = 1, δ = 2m; c = 4, γ = 2, δ = 2m;
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Again, we use ci resp. γi resp. δi to denote the parameter c resp. γ resp. δ of the i-th parameter
setting numbered from left to right, top to button, 1 ≤ i ≤ 12. Then the expansion

(1 − p)δ

(p − 1)2(1 + mp − p)
= 1 + (3 − δ − m)p +

(
6 − 7

2
δ +

1
2
δ2 + m(δ − 4 + m)

)
p2

+
(

10 − 1
6
δ3 + 2δ2 − 47

6
δ − 10m +

9
2
δm − 1

2
δ2m + 5m2 − δm2 − m3

)
p3 + O(p4)

makes it possible to collect all the contributions to the expansion in question. Since c1 +
c6 = 0 we have no contribution to p−1. For the constant term we have contributions by
the k-th parameter setting, k ∈ {1, 2, 6, 8, 9}, which sum up to m. The coefficient at p
results from contributions by the k-th setting, k ∈ {1, 2, 3, 6, 7, 8, 9, 11}, which sum up to
2− 2m2. The coefficient at p2 results from k ∈ {1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12} and is given by
2+ 7

3m3−m2− 10
3 m. Thus, the expansion of all the terms of ν belonging to the first pattern

is given by

m + (2 − 2m2)p +
(

2 +
7
3
m3 − m2 − 10

3
m

)
p2 + O(p3).

2. Terms of the pattern c·pγ

(p−1)2(mp−m−p) with

c = −1, γ = m − 1; c = 2, γ = m + 1; c = 1, γ = m + 3; c = −2, γ = m + 2;
c = −1, γ = 2m + 2; c = m, γ = 2m + 1; c = −2m, γ = 2m; c = −1, γ = 2m;
c = 1, γ = 2m + 1; c = m, γ = 2m − 1; c = 1, γ = 2m − 1;

Since γ grows with m for all eleven parameter settings and since

c · pγ

(p − 1)2(mp − m − p)
= − 1

m
− 3m − 1

m2
p − 6m2 − 4m + 1

m3
p2 + O(p3)

holds, the only contribution to the expansion in question (recall that we are discussing the
case m ≥ 3) results from choosing m = 3. For this case all parameter settings together
contribute 1

3p2 +O(p3). For m ≥ 4, the contributions of all terms of the pattern considered
here are in O(p3) and thus beyond the precision of our asymptotic.

Adding all the contributions made by the terms of τ and ν finally yields the expansion stated in
the theorem. The cases m = 1 and m = 2 can be proved easily by an inspection of (2) for these
specific values of m. �

Remarks:

1. The assumption of m being fixed is essential for the asymptotic given in the previous theorem.
Like the coefficients of our asymptotic expansion the constant of the O-term grows with m.
As a consequence, our asymptotic is rather precise for small values of m even for p relatively
close to 1

2 . However, with growing m we need p close to zero for our asymptotic to provide
values being similar to the precise number of comparisons.

2. Considering Σ = {0, 1} does not provide simplified results for the original Horspool algo-
rithm. Since the pattern is processed in a fixed order from right to left, it is not possible
to simplify the corresponding summations, e.g. by partitioning the set of patterns. From a
mathematical point of view, the fixed order of processing implies that for almost all distri-
butions the sums5

∑m
j=1 tj equal just for two patterns P1, P2 with P1[2..m] = P2[2..m].

Based on the expected number of comparisons for searching a random pattern in a random
text, it is now possible to compare the modified algorithm with the original one. The plot in
Figure 3 shows the quotient E[Cmod

n (m)]/E[Corg
n (m)], i.e. the expected number of comparisons

5Here we assume, that the definition of tj is adapted to the case of the original algorithm as described on page 8.
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Figure 3: The expected number of comparisons made by the modified algorithm divided by the
same number for the original one. The different curves correspond to different lengths m ∈
{2, 3, 4, 5} of a random pattern. The x-axis determines the probability of symbol 1 according to
π1 := x+1

22 .

made by the modified algorithm divided by the corresponding number for the original method, for
Σ = {0, 1}, π1 := x+1

22 and m ∈ {2, 3, 4, 5}. The highest curve corresponds to the case m = 2, the
lowest to the case m = 5. The original algorithm is slightly better for a uniform distribution only.
For every asymmetric distribution our modified algorithm runs faster. The longer the pattern
becomes, the larger the potential advantage of the modified algorithm gets. In case of a random
pattern of length 5 we need less than 80% of the running time of the original algorithm for the
most beneficial distribution. The same behavior can be observed for alphabets of larger sizes. In
Figure 4 you can find a plot of the same quotient for an alphabet of size 3 and a random pattern
of size 5; the x and y axes represent the probabilities for two of the three symbols. Again, the
original algorithm is faster for the uniform distribution. However, the potential advantage of our
algorithm is even higher than in the case of a binary alphabet, needing less than 75% of the original
algorithm’s running time in the best case.

4 Simulations

In this section, we provide some simulation results in order to

• show the accuracy of our asymptotic formulae,

• to study the effect of using approximated probabilities (that result from sampling the text
randomly) for the modified algorithm, and

• to see how the modified algorithm performs on real world data which is not generated
according to our simple probability model.

For the first item we have generated a random text T of size 1000000 over the alphabet Σ =
{A,C,G,U} according to the probability distribution πA = 9

20 , πC = 1
10 , πG = 1

5 and πU = 1
4 and
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Figure 4: The expected number of comparisons made by the modified algorithm divided by the
same number for the original one. The plots show this quotient for a random pattern of size 5 over
an alphabet of size 3 for two different viewpoints. The x and y axes determine the probabilities
of the symbols 1 and 2 according to π1 = x

20 and π2 = y
20 .

searched for several patterns of different lengths. Table 2 shows the observed results. As we can
see, the asymptotical number of comparisons given by Theorem 2 is rather precise with a relative
error of only about one per thousand. Furthermore, we observe that there are patterns for which
both algorithms have the same behavior. One example is the pattern UUUGG for which both
algorithms need the same number of comparisons because πG < πU holds, such that the order in
which the modified algorithm processes this pattern is identical to the one used by the original
method. Finally, with the size of the pattern increasing, we observe a greater potential for cutting
down on the number of comparisons for the modified algorithm.
In order to study the effect of using approximated probabilities for the modified Horspool algorithm
we ran the following experiments: We generated random texts of size 250000 according to four
different probability distributions. For each of these texts we used the modified algorithm so search
for different patterns using random samples of different sizes to approximate the probabilities.
These experiments (fixed text T and fixed pattern P ) were repeated 50 times; the resulting
average number of comparisons needed together with the number of comparisons needed when
using the exact distribution of the symbols is shown in Table 3. We observe that using only an
approximation of the probability distribution may be either an advantage or an disadvantage. For
instance, pattern AAACG needs a smaller number of comparisons for the random text according
to distribution Π1 for all sizes of the random sample considered. However, the same pattern needs
more comparisons for all sample sizes and probability distribution Π2. If we sum the average
number of comparisons for all patterns and all distributions, we observe that the largest sample
size ((|Σ| + 1)

√|T |) leads to the best result, the smallest sample size ( 1
2

√|T |) to the worst. This
contradicts somehow the fact that the usage of the real probabilities (last column) leads to the
largest total number of comparisons since we should assume that a larger sample size leads to a
better approximation of the probabilities; but then, using the largest sample size should be closest
to using the exact distribution. Furthermore, if we take the running time for sampling the text
into account (assuming that the running time of one comparison of two symbols is similar to that
of sampling a single symbol of the text), we get the converse situation: Adding the amount of
250 to each of the average numbers of the fifth column results to a total amount of 4219162.02
in contrast to a total number of 4228339.50 (resp. 4306816.08) comparisons which follow from the
addition of 500 (resp. 2500) to each entry of the third (resp. fourth) column. As a consequence,
we should expect that using a larger sample size does not pay off over a long run.
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comparisons observed asymptotic formulae
P #P in T original modified original modified as./ob. modified

AAAAA 18491 643567 643567 644970 644970 1.002180037
AAACG 1804 391173 388644 390920 387843 0.997938988
ACACG 426 388496 375071 388206 375606 1.001426397
UCACG 237 420538 405468 420557 406492 1.002525477
UCCCG 40 286655 281813 286055 281021 0.997189626
UCGCG 108 333183 324505 333259 326005 1.004622425
UCCGG 101 351441 331699 351584 328789 0.991226986
UUUGG 605 378200 378200 377609 377609 0.998437335
UUUUU 992 353235 353235 352783 352783 0.998720399

UAGACGCA 9 386239 301838 386114 302373 1.001772474
AGGUAUAC 26 438142 414726 438301 410599 0.990048852

CAACUAGCAUACGAU 0 614298 492315 614712 474548 0.963911317

Table 2: The number of comparisons observed when simulating the original (third column) and the
modified (forth column) Horspool algorithm searching for different patterns P . The columns five
and six show the corresponding asymptotic numbers of comparisons according to our formulae.
The second column shows the number of occurrences of P in the random text T used for the
simulations which can be assumed to be the relative probability of that pattern. The last column
provides the quotient of the asymptotical divided by the observed number of comparisons for the
modified Horspool algorithm.

For the third item we use the entire genome of Methanococcus jannaschii taken from the
NCBI-database (sequence NC000909) as our text. This genome consists of 1664970 symbols (nu-
cleotides) of which a few are letters not taken from the alphabet {A,C,G, T} being placeholders
for different possibilities for a nucleotide. We simply have omitted these letters which provided
a text of length 1664957. For this text (genome) it is well-known that it possesses the following
non-uniform diletter (dinucleotide) frequencies (see e.g. [ClB00]):

A C G T
A 0.134 0.039 0.060 0.111
C 0.055 0.033 0.008 0.059
G 0.057 0.027 0.034 0.039
T 0.098 0.056 0.055 0.134

Thus it obviously is no instance of our probability model from the average-case analysis. Nev-
ertheless the four different letters are non-uniformly distributed according to the probabilities
(computed as relative numbers of occurrence) Pr[A] = 0.34, Pr[C] = 0.16, Pr[G] = 0.16 and
Pr[T ] = 0.34 (all rounded to the second decimal digit). As our subsequent results will show, the
modified Horspool algorithm will be superior to the original one even for this kind of data.
To compare the original to the modified algorithm with this sort of input we ran two different
kinds of simulations. For the first kind we have searched for 1000 random patterns of length l,
l = 5, 10, 15, 20, 25, 50, where each random pattern has been generated according to a multinomial
distribution with Pr[A] = 0.34, Pr[C] = 0.16, Pr[G] = 0.16 and Pr[T ] = 0.34. For the second
kind, the same simulations have been performed, now choosing random patterns according to the
uniform distribution. In both cases and for both algorithms we have determined the to total
number of wins, i.e. the total number of patterns for which the algorithm outperforms its com-
petitor, together with the average number of comparisons needed by the algorithm to search the
entire text for all random patterns of the same size l. The corresponding results are represented
in Table 4. Please note that the number of wins does not always sum to 1000 since in some cases
both algorithms needed the same number of comparisons thus giving rise for a tie. As we can see,
the advantage of the modified algorithms over the original one does not depend on the simplifying
assumptions made for random texts within our analysis. Additionally, it is not necessary that ran-
dom patterns are taken from the same distribution as the text (as assumed for our average-case
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sample size

P Π
√|T | = 500 (|Σ| + 1)

√|T | = 2500 1
2

√|T | = 250 ex. distribution

AAAAA Π1 87707.00 87707.00 87707.00 87707
Π2 97568.00 97568.00 97568.00 97568
Π3 137401.00 137401.00 137401.00 137401
Π4 160773.00 160773.00 160773.00 160773

AAACG Π1 116365.64 117722.60 116502.48 125920
Π2 115984.40 114040.24 117457.72 112722
Π3 131757.00 131757.00 132392.54 131757
Π4 82683.00 82683.00 82683.00 82683

ACACG Π1 117537.88 119290.76 117642.80 124426
Π2 117309.00 113162.92 122104.58 112072
Π3 129745.00 129745.00 129979.40 129745
Π4 79949.00 79949.00 79949.00 79949

UCACG Π1 130588.52 128542.74 129399.34 133371
Π2 126723.72 127101.98 127785.82 127021
Π3 121376.00 121376.00 121396.64 121376
Π4 86280.50 86280.00 86279.00 86292

UCCCG Π1 105378.92 106728.98 105674.32 110334
Π2 101747.66 100993.36 100014.62 100836
Π3 84052.00 84052.00 84052.00 84052
Π4 60822.72 60822.92 60823.08 60822

UCGCG Π1 127387.42 129384.80 125661.40 133019
Π2 121952.32 122208.36 121376.38 121758
Π3 99157.82 99074.00 99157.82 99074
Π4 72581.06 72582.68 72583.04 72587

UCCGG Π1 126307.72 127522.70 127972.42 131834
Π2 121356.74 121579.20 120691.76 121284
Π3 95870.00 95870.00 95936.70 95870
Π4 76562.80 76564.08 76564.08 76582

UUUGG Π1 115178.12 114219.96 114219.96 120448
Π2 107047.40 108004.30 105953.80 108141
Π3 77860.00 77860.00 77860.00 77860
Π4 113878.68 115359.60 112397.76 120296

UAGACGCA Π1 108223.18 109088.40 109358.86 113183
Π2 111639.54 110760.78 111648.42 110580
Π3 102248.42 102191.00 102580.92 102191
Π4 67577.00 67571.96 67573.64 67556

AGGUAUAC Π1 98453.86 95495.72 96455.44 101408
Π2 94157.88 94568.64 94392.80 94556
Π3 75645.00 75645.00 75652.00 75645
Π4 103504.58 103567.40 103539.48 103707

Σ 4208339.50 4206816.08 4209162.02 4254406

Table 3: The average number of comparisons needed to search for pattern P in a random text
of size 250000 generated according to the probability distributions Π1 = {πA = 1

4 , πC = 1
4 , πG =

1
4 , πU = 1

4},Π2 = {πA = 10
34 , πC = 9

34 , πG = 8
34 , πU = 7

34},Π3 = {πA = 4
10 , πC = 3

10 , πG = 2
10 , πU =

1
10},Π4 = {πA = 9

20 , πC = 1
20 , πG = 1

4 , πU = 1
4}. Each entry from the third to the fifth column

corresponds to this average taken over 50 independent runs for the given pattern and a fixed
text using a random sample of the corresponding size in order to approximate the probability
distribution. The rightmost column provides the number of comparisons needed by the modified
Horspool algorithm using the exact probability distribution. The last row provides the sum of all
comparisons needed.
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multinomial uniform
l orig. algorithm mod. algorithm orig. algorithm mod. algorithm

5
214

889955.17
718

838769.23
217

806068.45
726

761028.73

10
102

743853.53
896

657868.17
209

684720.97
791

632732.47

15
112

707489.40
888

618483.51
214

658627.78
786

606088.09

20
92

715433.77
908

620506.15
210

666914.43
790

612703.16

25
117

699424.07
883

606884.82
215

665760.25
785

610888.14

50
96

703774.44
904

608933.88
224

674893.91
776

618344.42

Table 4: The results of our simulations performed on the genome of M.jannaschii and 1000 random
patterns of size l taken from a multinomial and from a uniform distribution. The italic number
represents the number of wins of the corresponding algorithm, the number in roman is the average
number of comparisons needed to find all 1000 patterns of the corresponding length.

analysis) in order to benefit from non-uniformly distributed symbols in the average.

5 Conclusions

In this paper we have presented a modification of Horspool’s string matching algorithm similar to
Sunday’s optimal mismatch algorithm (which is a modification of the Boyer-Moore algorithm). For
both, the idea to speed up the algorithm is to use statistical properties of the (random) input which
may be derived from knowledge on the source of the input, e.g. when processing natural languages
with well-known symbol distributions, or from a random sampling performed as a preprocessing.
For the simple model of random texts according to a multinomial distribution we have proven that
this modification leads to a speedup of the Horspool algorithm in the average. Additionally, our
simulations on DNA data provides some evidence that this remains also valid when the input is
equipped with intersymbol dependencies (like non-uniform dinucleotide frequencies).

The example of the modified string matching algorithm shows that we can benefit for our
algorithms from statistical knowledge on the input; in the opinion of the author, it is worth
investigating if this strategy can be advantageously applied to other problems and their algorithmic
solutions.
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6 Appendix

If the string matching problem has to be solved in the context of natural languages, we should use
well-known statistics for the probabilities of the different symbols in order to run our algorithm.
However, we will show in this section that it is possible to get precise estimates of those probabilities
for arbitrary texts in time sublinear in the length of the text. For this purpose we use methods
from statistical learning theory as described in [HTF01]. We will construct a maximum likelihood
estimator for the probabilities based on random samples of the text. Assuming a multinomial
distribution of the symbols, the likelihood L(p1, . . . , pn) is given by

L(p1, . . . , pn) = pr1
1 pr2

2 · · · prn−1
n−1 prn

n

where pi denotes the (unknown) probability of the i-th symbol in Σ and ri is the number of
occurrences of this symbol in the random sample, 1 ≤ i ≤ n. To ensure that the probabilities
sum to one we set pn = 1 − p1 − p2 − · · · − pn−1 such that L(p1, . . . , pn) = pr1

1 pr2
2 · · · prn−1

n−1 (1 −
p1 − p2 − · · · − pn−1)rn holds. To determine the maximum likelihood estimator we have to set the
partial derivative of ln(L(p1, . . . , pn)) with respect to pi equal to zero, 1 ≤ i ≤ n − 1, and solve
the resulting equations. We find

∂

∂pi
ln(L(p1, . . . , pn)) =

ri

pi
− rn

1 − p1 − . . . − pn−1
, 1 ≤ i < n,

with the solution
pi =

ri

r1 + r2 + . . . + rn
=

ri

N
, 1 ≤ i ≤ n,

for N the size of our random sample. Note that the solution for pn results from

pn = 1 −
n−1∑
j=1

rj∑n
k=1 rk

=

∑n
k=1 rk −∑n−1

j=1 rk∑n
k=1 rk

=
rn

r1 + r2 + . . . + rn
.

Thus, the maximum likelihood estimator for pi is given by the number of occurrences of the i-th
symbol in our sample divided by the sample size.

It is well-known that a maximum likelihood estimator is consistent and thus it converges to the
real probabilities. In our case this is obvious for N = n since then we use the exact relative number
of occurrences as an estimator for the probabilities. However, we do not want to sample the entire
text and therefore it is necessary to get a representation for the error made when considering
samples of smaller sizes only. For this purpose we have to determine I(P )i,j := −∂2 ln(L(p1,...,pn))

∂p1∂pj
.

We find

I(P )i,j =

{
ri

p2
i

+ rn

p2
n

for i = j
rn

p2
n

otherwise
.

From this we obtain the so called Fisher information F (P ) by taking expectations of I(P ) over
all possible random samples (over all possible ri), i.e. F (P ) = E[I(P )]. In our case, the assumed
multinomial distribution for the symbols implies E[ri] = Npi such that

F (P )i,j = E[I(P )i,j ] =

{
N
pi

+ N
pn

for i = j
N
pn

otherwise

holds. To get an approximation for the standard errors made by our estimators we need the inverse
of matrix (F (P )), for which we find

(
(F (P ))−1

)
i,j

=

{
ri(N−ri+rn)
N2(N+rn) for i = j

− ri·rj

N2(N+rn) otherwise
.

The entries of the main diagonal of this inverse matrix are the variances of the multivariate normal
distribution to which the sampling distribution of the maximum likelihood estimators converges.
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Therefore an α% confidence interval for the real probability of the i-th symbol is approximately
given by (

ri

N
− zα

√(
(F (P ))−1

)
i,i

,
ri

N
+ zα

√(
(F (P ))−1

)
i,i

)
,

for zα the α percentile of the standard normal distribution. For example, for α = 0.95 (i.e. for a
95% confidence interval) we have zα = 1.96. The size of the confidence interval is therefore given
by

2zα

√(
(F (P ))−1

)
i,i

=
2zα

N

√
ri − r2

i

N + rn
≤ 2zα

N

√
ri

E=
2zα

N

√
piN. (3)

Here, the last equality holds in expectation only; it tells us that the most probable symbols need
the largest number of samples to get a good approximation for their probability. As a consequence
of equation (3) the size of the confidence interval decreases in expectation at least like 1/

√
N to

zero with an increasing sample size N for all the pi and for arbitrary fix α. It is therefore sufficient
to use a sublinear sample of size n1−ε for ε > 0 to get an approximation for the distribution
of the symbols of high precision. For the application of our algorithm this implies a sublinear
contribution to the total running time in cases where the distribution of the symbols is not known.
Thus for large texts, our algorithm will be faster than the original Horspool algorithm for most of
the inputs (distributions) even if we first have to compute estimates for the symbol’s probabilities.
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