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Abstract

Various tools to predict the secondary structure for a given RNA sequence are based on dynamic

programming used to compute a conformation of minimum free energy. For structures without pseu-

doknots, a worst-case runtime proportional to n3, n the length of the sequence, results for a table of

dimension n2 has to be filled in while a single entry gives rise to a linear computational effort. However,

recently it has been observed that reformulating the corresponding dynamic programming recursion to-

gether with bookkeeping of potential folding alternatives (a technique called sparsification) may reduce the

runtime to n2 on average, assuming that nucleotides of distance d form a hydrogen bond (i.e. are paired)

with probability b
dc

for some constants b > 0, c > 1. The latter is called the polymer-zeta model and

plays a crucial role for the speedup of before mentioned algorithm. In this paper we first show, that the

polymer-zeta property does not apply to the analysis of sparsification since there conditional probabilities

need to used. Afterwards, we investigate the combinatorics of RNA secondary structures assuming that

the needed conditional probabilities behave like in a polymer-zeta probability model. We show that even

if many of the structural parameters behave almost realistic on average, the expected shape of a folding in

that model must be assumed to highly differ from those observed in nature. More precisely, we prove our

polymer-zeta model to be appropriate for mRNA molecules but to fail in connection with almost every

other family of RNA. To this end we oppose our findings to a stochastic model of RNA proven to reflect

the native shape of RNA and statistics derived from databases.

1. Introduction

The applications of RNA secondary structure prediction in computational biology are manifold
and we refer the reader to [1] for an overview. Here we only discuss the rather special, nevertheless
highly interesting application of identifying accessible motifs in mRNA on a genome wide level
from [14] which motivated our research of this paper.

It is well known that, in order to respond to different stimuli, synthesis of proteins needs to
be highly regulated [7]. One mechanism being in charge relies on cis-regulatory motifs within
mRNAs to which trans-regulatory proteins and microRNAs bind. Since the chemical recognition
is based on an interaction between amino acids residing in the protein and the corresponding
nucleotides in the cis-regulatory motif residing in the mRNA (see [14] and the reference given
there) it is of importance, that the nucleotides constituting the motif are accessible i.e. are not
bonded for the mRNA. However, in order to decide this property it is no longer sufficient to work
on sequence level, the 2D conformation of the mRNA, i.e. its secondary structure, needs to be
taken into account. Thus, for the computational search for cis-regulatory motifs in RNA, structure
prediction algorithms are needed. However, if one aims for identifying mRNA motifs on a genome
wide level, the classical O(n3) time algorithms (see e.g. [17, 5, 16]) are not appropriate. To this
end, Wexler et al. came up with the following idea: Like for the common dynamic programming
(DP) algorithms to minimize free energy, two recursions W and V are used. Processing input
sequence s1s2 · · · sn, V (i, j) represents the minimal energy possible for a folding of subsequence
si · · · sj subject to the i-th and j-th nucleotide being paired to each other. W (i, j) gives the
corresponding minimum without that restriction. Then by distinguishing the cases of an optimal
folding of sequence si · · · sj to either
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• be an optimal folding with si being paired to sj ,
• to result from unpaired si attached to an optimal folding for si+1 · · · sj , or from unpaired
sj attached to an optimal folding for si · · · sj−1, or

• to result from combining two smaller optimal foldings with a bifurcation at position k,

we arrive at formula

W (i, j) = min{V (i, j), W (i+ 1, j), W (i, j − 1), min
i≤k<j

{W (i, k) +W (k + 1, j)}}.

Recursion V is built along the same ideas, introducing different contributions ex, x ∈ {h, s, b}, to
the free energy depending on the kind of loop x the pairing of si and sj closes, and a constant
multi-branch penalty a:

V (i, j) = min

{
eh(i, j)︸ ︷︷ ︸
hairpin

, es(i, j) + V (i+ 1, j − 1)︸ ︷︷ ︸
stem

, min
i<i′<j′<j

{eb(i, j, i′, j′) + V (i′, j′)}︸ ︷︷ ︸
bulge or interior loop

,

min
i≤k<j

{W (i+ 1, k) +W (k + 1, j − 1)}+ a︸ ︷︷ ︸
multibranch loop

}
.

Since a quadratic number of different combinations of i and j have to be considered, each de-
termining a minimum over a linear number of elements in expectation, using this representation
implies a cubic running time to compute W even in the average-case. Now it is possible to rewrite
recursion W (without affecting the computed optimum) such that it obeys the triangle inequality

∀i < j′ < j W (i, j) ≤ W (i, j′) +W (j′ + 1, j).

This property of the new recursion finally can be used to prove that for the computation of the
optimal folding for subsequence si · · · sj a pairing of si and sk only needs to be considered if pairing
of si and sk already implied a minimum while considering si · · · sj′ , j′ < j (see [14] for details).
Furthermore, when computing W in the right ordering, this information is available whenever
needed and the candidates sk to be considered can be maintained in a list associated to index i.
This idea gives rise to the following folding algorithm

Algorithm CandidateFold:
0 for each row i := n to 1 do
1 candidatelist:= ∅;
2 for each column j := i to n do
3 W (i, j) := min

k∈candidatelist{V (i, k) +W (k + 1, j)};
4 if V (i, j) < W (i, j) then
5 W (i, j) := V (i, j)
6 Append j to candidatelist;

It is obvious that the expected running time of CandidateFold depends on the expected length
of the lists maintained during its execution. Wexler et al. have claimed in [14] that under the
assumption of the so-called polymer-zeta property with parameter c > 1 this expected length
is constant, implying a quadratic runtime in the average-case. As a result, one can assume the
DP matrix to be sparse in case of the polymer-zeta property thus speaking of sparsification in
connection with the technique used for CandidateFold. Here, polymer-zeta property means that
the probability for the i-th and j-th nucleotides at distance (span) d = j − i+ 1 to form a pair is
given by pd = b

dc (for some constants b > 0, c > 0). The theoretical choices for the parameters are
b = 1 and c = 1.5 (see also the subsequent analysis). However, as we will point out in the sequel,
their way of reasoning was faulty. As a consequence, we will show that sparsification cannot be
assume to save a linear factor for above DP algorithm. Afterwards, we invert the question, asking
how RNA structures would need to look like for sparsification to really be effective. To this end,
we will assume a probability model for secondary structures that is in one-to-one connection to
the way Wexler et al. argue in their paper. We find a rather unnatural appearance for some of the
structural features.
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Figure 1. The probability pn,d (analytically determined formula as blue dots,
fitted curve ≈ 1

d1.5 as read line) for of span d to show up in a structure of size
n = 1000 assuming a uniform distribution for secondary strutures.

But first let us show, why the arguments in [14] are wrong. We start with considering the classic
combinatorial model for RNA secondary structure (see [9] and the references given there) assuming
a minimal hairpin loop length of 1. Building on the generating functions from [2] we computed
the (precise asymptotic) probability pn,d for having a distance d base pair in a secondary structure
of size n (the related computations will be reported elsewhere):

pn,d =

(
5 + 2

√
5
)√

n√
2
(
15 + 7

√
5
)
π
√
(d− 2)3

√
n− d+ 2

.

Investigating this probability further shows, that even the combinatorial model behaves in a
polymer-zeta style unless d is not to close to n. To make this point clear, take a look at Fig-
ure 1 where we depict the plot of pn,d for n = 1000 and d between 4 and 1000 (blue dots) together

with a curve fitting (red line) we computed using Mathematica according to the pattern b
dc + k

(finding b ≈ 1, c ≈ 1.5 and k ≈ 0). Thus, at a first sight the probability for span d base pairings
seems to behave as claimed by [14] with the only difference, that the native structures discussed
in that paper gave rise to slightly different parameters – in [14] the authors have experimentally
justified the polymer-zeta model for their mRNA data, finding constants b = 2.11 and c = 1.47.
However, a careful look at their arguments yields a contradiction (see Observation 1 in [14]): “A
new candidate j is added to the candidate list [...] iff the optimal predicted folding of substring
si . . . sj forms a single structure from index i to index j”, i.e. if and only if within the optimal
folding for subsequence si . . . sj bases si and sj are paired. But this kind of pairing is not equiv-
alent to the assumptions of the polymer-zeta model since we must condition the base pair to
connect the first and the last element of the considered (sub)structure instead of connecting any
two bases (and thus disallowing many pairings which would cross the considered outermost one).
We computed the corresponding asymptotic (n → ∞) probability p̂d again for the combinatorial
model, finding

p̂d =

(√
5− 3

)2 √
d3

4
√
(d− 2)3

=

(
7

2
− 3

√
5

2

)
+

21
2 − 9

√
5

2

d
+

105
4 − 45

√
5

4

d2
+ O

((
1

d

)5/2
)
, d → ∞.

This is close to a d−1 behavior and indeed, calculating the related expected length of a candidate
list yields the linear behavior as shown in Figure 2. Thus, in accordance with the findings of [8]
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Figure 2. The expected length of a candidate list as a function of the input size
n computed for the combinatorial model of RNA.

– there the authors also considered a combinatorial model to quantify the number of secondary
structures to which sparsification applies – we find that a quadratic runtime is not possible on
average but a cubic time with a huge reduction of the leading constants involved. Note, that
due to the identical singular structure of the respective generating functions, the qualitative same
behavior results for the so-called Bernoulli-model [10].

In conclusion, at least in the combinatorial regime we cannot assume that sparsification really
gives rise to a linear speedup for structure prediction. On the other hand, it is hard to reason
about native structures in a similar rigorous way for we do not have appropriate models that reflect
the real world behavior of all the different classes of RNA sufficiently precise. Therefore, in this
paper, we proceed in a different way. We study the expected shape of RNA secondary structures
of size n assuming that the (conditional) probability of an outermost base pair of span d is given
by b

dc . Under this assumption we determine the distribution and the expected shape of structural
motifs like hairpins, bulges, interior-loops, multiloops and the exterior loop of secondary structures
under various (c, b)-polymer-zeta-models (various choices for b and c). Then, a comparison of the
appearance of any RNA family to our average-case statistics can easily provide a first hint at
whether or not the data shows a similar appearance as implied by a probability model that would
allow for sparsification to save a linear factor indeed. Opposing our findings to a stochastic model
of RNA assumed to reflect the native shape of RNA, we find that the polymer-zeta world only
slightly differs from what is observed in nature for some structural motifs while we observe drastic
differences for others.

2. The Expected Shape of RNA in a polymer-zeta Model

We assume the reader familiar with the definition of RNA secondary structures (considered as
a combinatorial object) as well as their structural motifs like hairpins, bulges, etc. We refer to [9]
for the terminology used here.

Let Rn be the class of all the RNA primary structures, i.e. sequences s1 · · · sn with si =
A,U,G,C. Let Sn be the class of all RNA secondary structures of size n. Here we assume that
Sn ∈ Sn is represented as the set of all its base pairs (opposed to other equivalent representations
like dot-bracket or planar graph). Our study of Sn will be conducted analogously to that from
[12, 10] for the Bernoulli model. For the latter one considers the expected number of different
RNA secondary structures (and related parameters) supposing that only structures compatible
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(with respect to complementarity) to a random sequence (this provides the model of randomness)
are counted. Accordingly, since the entirely unpaired structure is compatible to any sequence, it
has probability 1. For paired positions, the so-called stickiness p – defined as the probability of
two (according to a Bernoulli experiment) random si (nucleotides) being complementary – comes
into play; any two paired nucleotides are weighted p in the Bernoulli model. As a consequence,
every secondary structure of size n and i pairs of paired nucleotides is considered with probability
pi. More precisely, if we aim at computing the number of different secondary structures r(n) of
size n on a sequence s ∈ Rn of length n we find [12] the following recursion (either attach an
unpaired nucleotide at position n + 1 to any of the r(n) smaller structures or pair it with one of
those at position 1 to n− 1 which decomposes the structure accordingly):

(2.1) r(n+ 1) = r(n) +
∑

0≤k≤n−2

r(k)r(n− k − 1)η(k + 1, n+ 1).

Here r(0) = r(1) = r(2) = 1 must be assumed and η(i, j) is the indicator which is 1 iff si and sj
are complementary. Now taking expectations of (2.1) we arrive at e(n+1) = e(n)+

∑
0≤k≤n−2 p ·

e(k)e(n− k − 1) where stickiness p obviously corresponds to the expectation of η. Thus, in order
to compute the expected number of different secondary structures on a random sequence of size
n, nucleotides which are paired have to be weighted p.

Here, we introduce a (c, b)-polymer-zeta-model for RNA structures in an analogous way. For
any Sn ∈ Sn we list all its base pairs indexed by their distances (length of enclosed subsequence
+1), i.e. Sn = {rd1 , rd2 , · · · , rdℓ

} means, that the i-th base pair in Sn has distance di, 1 ≤ i ≤ ℓ.
We say Sn = ∅ if Sn has no base pairs. By weighting each base pair of distance d with probability

pd = b
dc , we arrive at probability P(Sn) =

∏ℓ
i=1

b
di

c , and – like for the Bernoulli model – the

probability of having a completely unpaired structure is P(∅) = 1. We name this model as (c, b)-
polymer-zeta-model. This model is consistent with the considerations on the expected length of
candidate lists of the CandidateFold algorithm, since according to the underlying decomposition
of secondary structures, no potentially crossing interactions contribute, i.e., we consider the case
that the two connected nucleotides at distance d form a single structure with probability pd.
Accordingly, for c > 1, the expected length of a candidate list would indeed be constant in our
model. To convince the reader, that our approach really behaves as claimed, we have adapted
(2.1) to our (c, b)-polymer-zeta-model and (numerically) computed the probability p′d of a span
d base pair conditioned on the fact that it connects first and last elements within the folding of
an entire (sub)sequence. The plot of Figure 3 shows the resulting behavior (blue dots) together
with a curve (red line) fitted to the computed probabilities according to the pattern b

dc + k using
Mathematica (finding b ≈ 0.7, c ≈ 2 and k ≈ 0).

In what follows, we shall classify RNA secondary structures according to the number and
the length of hairpin-loops, bulge-loops and interior-loops as well as the degree of multiloops,
the number of unpaired nucleotides in the exterior loop and investigate the average behavior of
these parameters in the context of the (c, b)-polymer-zeta-model. In contrast to the assumption
of c = 1.47 motivated above, our methodology will only allow to deal with integer choices for
c. However, assuming a continuous transition of parameters when changing c from 1 to 2 our
findings pin the quantitative behavior of the various structural features down to a small interval.
Accordingly, above motivated values like c = 1.5 (or c = 1.47 as reported by [14]) can be assumed
to imply a behavior lying in those intervals. More importantly, it becomes possible by our results
to describe the expected shape of RNA structures for which sparsification would provide a linear
speedup – here only c > 1 is needed. An overview of some of the corresponding results to be
derived can already be found in Table 1, where the findings of this paper are opposed to those
from [11] which have been derived from a sophisticated stochastic context-free grammar model
(proven to nicely reflect the native behavior of RNA).

For the reader’s convenience, we have visualized in Figure 4 the results of Table 1 such that the
respective values can easily be compared. A first glance at that figure already reveals a notable
disapproval of our polymer-zeta model to the native behavior of RNA foldings for almost all
parameters considered.
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Figure 3. Probability p′d of a span d base pair connecting the outermost nu-
cleotides of a folded (sub)sequence for our (2, 1)-polymer-zeta-model (blue dots)
together with the fitted curve ≈ 0.7

d2 (read line).

The expected behavior of various structural parameters as derived from a stochastic model:

parameter expectation

(1, 1) (1, 2) (2, 1) (2, 2)

Number of hairpins 0.0226n 0.1313n 0.1462n 0.1202n 0.1458n

Length of a hairpin-loop 7.3766 1.7262 1.5291 1.7367 1.5467

Number of bulges 0.0095n 0.0210n 0.0261n 0.0076n 0.0113n

Length of a bulge 1.5949 2.0476 1.7625 2.4079 2.0354

Number of interior loops 0.0164n 0.0110n 0.0099n 0.0055n 0.0059n

Total Length of both loops within
an interior loop

7.7870 4.2364 3.6162 5.3455 4.4068

Number of multiloops 0.0106n 0.0330n 0.0390n 0.0112n 0.0220n

Degree of a multiloop 4.1311 5.9848 5.5615 12.5536 8.3636

Table 1. The asymptotic expected behavior of various structural motifs in ran-
dom RNA secondary structures of size n, n → ∞, according to a stochastic model
(second column) and our new polymer-zeta model for different choices for c and
b as indicated by the column heading (c, b) (third to sixth column). All constants
shown are rounded to the fourth decimal digit.

3. Average number of hairpins

Let Xc,b
n denote the random variable counting the number of hairpins in a secondary structure

of size n and E(Xc,b
n ) (resp. σ(Xc,b

n )) be the expectation (resp. standard deviation) of Xc,b
n . We

find:

Theorem 1. Under the assumption of the (c, b)-polymer-zeta-model, c ∈ {1, 2}, the number of
hairpins in a secondary structure of size n is asymptotically Gaussian distributed with mean

E(X1,b
n ) = x

(1)
1,bn+ x

(2)
1,b + O(n−1), E(X2,b

n ) = x
(2)
2,bn+ x

(2)
2,b

n

log n
+ O(

n

log2 n
)

and standard deviation

σ(X1,b
n ) = x′

1,b

√
n(1 + O(n−1)), σ(X2,b

n ) = x′
2,b

√
n(1 + O((log n)−1))
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Figure 4. A visualization of the results shown in Table 1. For all diagrams, the
red triangle represents the values according to a stochastic model (second column
of table), the blue and marginally lower (resp. yellow and marginally higher)
rectangle shows the range spanned by the choices c = 1 and c = 2 for b = 1 (resp.
b = 2).

where xc,b and x′
c,b are positive constants. For b ∈ {1, 2} we have

(x
(1)
1,1, x

(2)
1,1, x

′
1,1) ≈ (0.1313, 0.1313, 0.1871) (x

(1)
1,2, x

(2)
1,2, x

′
1,2) ≈ (0.1462, 0.1460, 0.1857)

(x
(1)
2,1, x

(2)
2,1, x

′
2,1) ≈ (0.1202, 0.0376, 0.2047) (x

(1)
2,2, x

(2)
2,2, x

′
2,2) ≈ (0.1458, 0.0259, 0.2022)

Proof. Let Sn,k be the class of secondary structure of size n with k hairpins, and – as before

– Sn the class of all secondary structures of size n. Accordingly, let Ec,b
# (Sn,k) (resp. Ec,b

# (Sn))

denote the corresponding expected (averaged) number3 of structures in that class assuming the
(c, b)-polymer-zeta-model. Then

E(Xc,b
n ) =

∑
k≥1

k ·
Ec,b
# (Sn,k)

Ec,b
# (Sn)

.

We turn to the bivariate generating function

Sc(z, w) =
∑
n≥3

∑
k≥1

Ec,b
# (Sn,k)w

kzn +
∑
n≥0

zn

where the summation over size n assumes n ≥ 3 since we consider a minimal length of hairpin-loops
of 1. We derive a representation for Sc(z, w) by regarding the class Tn+2,k of so-called irreducible
structures (IS) which are given by those structures from Sn+2,k with the first and the last base
paired by a hydrogen bond. We have for k ≥ 2,

Ec,b
# (Tn+2,k) =

b

(n+ 1)c
· Ec,b

# (Sn,k),(3.1)

and in the case k = 1,

Ec,b
# (Tn+2,1) =

b

(n+ 1)c
(1 + Ec,b

# (Sn,1))

3Note that in our polymer-zeta model like for the Bernoulli model no fix numbers of structures but only expected
numbers exist.
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holds. Let Tc(z, w) be the double generating function of Ec,b
# (Tn+2,k) (n ≥ 3, k ≥ 1). Based on

eq. (3.1), we find

Tc(z, w) = b
∑
n≥3

∑
k≥1

1

(n+ 1)c
· Ec,b

# (Sn,k)w
kzn+2 +

∑
n≥1

b

(n+ 1)c
wzn+2.(3.2)

On the other hand, each Sn,k-structure can be considered a sequence of Ti,j-structures with leading,
intermediate and trailing run of unpaired bases. In terms of generating functions, we thus have

Sc(z, w) =
1

1− (Tc(z, w) + z)
.(3.3)

We start our analysis from the case c = 1. Dividing by z and taking the partial derivative in z
(denoted by index z) on both sides of eq. (3.2), we obtain

(3.4) (
T1(z, w)

z
)z = b

∑
n≥3

∑
k≥1

E1,b
# (Sn,k)w

kzn +
∑
n≥1

bwzn = bS1(z, w) +
b(wz − 1)

1− z

and thus get rid of denominator (n+1). In combination of eq. (3.3), we find the functional identity
for S1,b = S1,b(z, w), given by

(3.5)
∂S1,b

∂z
= −1

z
S1,b +

[
1

z
+

bz(wz − 1)

1− z

]
S2
1,b + zbS3

1,b

with initial condition S1,b(0, w) = 1. Our ultimate goal via eq. (3.5) is to derive the distribution
of the number of hairpins for secondary structures of size n according to our polymer-zeta model.
Here we shall first prove for any w ∈ (1− ϵ, 1 + ϵ) where ϵ > 0 is sufficiently small, that eq. (3.5)
has an algebraic solution with a unique dominant singularity at z = ρ(w). The next step is to
show that this is true uniformly for any |w − 1| < ϵ. As the third step we will apply a theorem
of perturbation on singularity analysis to prove the Gaussian distribution of X1,b

n with both mean
and variance linear in n asymptotically. The main tool used here is a transfer theorem from [6],
which is phrased as follows:

Theorem 2. (Transfer theorem)[6] Let U = {(1− z)−αλ(z)β : α, β ∈ C} for λ(z) = 1
z log

1
1−z .

Assume that f(z) is analytic at 0 with a singularity at z0, such that f(z) can be continued to some
∆z0(M,ϕ) domain, and there exist two functions σ, τ from U, such that

f(z) = σ

(
z

z0

)
+ O

(
τ

(
z

z0

))
.

Then we have [zn]f(z) = z−n
0 σn + O(z−n

0 τn) where ρn = [zn]ρ(z), ρ(z) = (1 − z)−aλ(z)b for

a ̸∈ Z≤0, is given by na−1

Γ(a) (log n)
b, ρ ∈ {σ, τ}.

We set

P (z, S1,b) = bz2(1− z)S3
1,b + [(1− z) + bz2(wz − 1)]S2

1,b − (1− z)S1,b

Q(z, S1,b) = z(1− z)

and accordingly
∂S1,b

∂z =
P (z,S1,b)
Q(z,S1,b)

where z = 0 is a removable singularity since by setting F (z, S1,b) =
P (z,S1,b)
Q(z,S1,b)

for z ̸= 0 and F (0, 1) = 1, we have F (z, S1,b) being analytic in some neighborhood of

z = 0. In what follows, we shall study both, the fixed singularities of S1,b(z, w), which are purely
given by eq. (3.5), and the movable singularities of S1,b(z, w) being dependent on the initial con-
dition S1,b(0, w) = 1. Since F (z, S1,b) is a rational function of S1,b with coefficients which are
polynomials of z, we are assured that S1,b only has finitely many fixed singularities, and all mov-
able singularities are either poles or branch points. We start by determining the fixed singularities
of S1,b. First there is no singularity arising from the coefficients indexed by z from P (z, S1,b) and
Q(z, S1,b), i.e., z(1−z), 1−z, 1−z+ bz2(wz−1) and bz2(1−z) are analytic on the complex plane
C. Secondly there is one singularity z = 1 arising from Q(z, S1,b) ≡ 0 unless w = 1 since we have
already removed the singularity z = 0 by setting F (0, 1) = limz→0 F (z, S1,b) = 1. Thirdly there is
a singularity z = 1 arising from the case when both P (z, S1,b) and Q(z, S1,b) vanish unless w = 1,
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i.e., there is a common root of P (z, S1,b) = 0 and Q(z, S1,b) = 0 except the removable singularity
z = 0 and w = 1. Furthermore, by substituting S1,b =

1
T1,b

we transform eq. (3.5) into

(3.6)

T ′
1,b = −

T 2
1,bP (z, 1

T1,b
)

Q(z, 1
T1,b

)
=

(1− z)T 2
1,b − [1− z + bz2(wz − 1)]T1,b − bz2(1− z)

z(1− z)T1,b
=

P̄ (z, T1,b)

Q̄(z, T1,b)
.

By inspection, the fixed singularities of eq. (3.6) are also the fixed singularities of eq. (3.5), and only
the common roots of P̄ (z, T1,b) = 0 and Q̄(z, T1,b) = 0 can potentially contribute to singularities.
In this case there is no more singularity from P̄ (z, T1,b) = 0 and Q̄(z, T1,b) = 0 except z = 0
and z = 1, based on which we conclude that the only fixed singularity of S1,b(z, w) is the point
at infinity and z = 1 unless w = 1. Due to Painlevé’s determinateness theorem [4], the movable
singularities of the solution of eq. (3.5) can only be poles or algebraic branch points. First we
claim that the dominant singularity of S1,b(z, w) is unique (single dominant singularity) since

[zn]S1,b(z, w) =
∑

k≥1 E
1,b
# (Sn,k)w

k > 0 holds for any n and w ∈ (1− ϵ, 1+ ϵ), thus the support of

S1,b(z, w), which is the set of all n such that [zn]S1,b(z, w) ̸= 0, is equal to {1, 2 · · · } = N. Thus
S1,b(z, w) is aperiodic and therefore its dominant singularity is unique [6]. Now, let z = α1,b(w) ∈
R+ denote the unique dominant movable singularity of S1,b(z, w). To ensure a single value for
S1,b(z, w) at z = α1,b(w), we consider the ∆α1,b(w)-domain given by

∆α1,b(w)(M,ϕ) = {z | |z| < M, z ̸= α1,b(w), | arg(z − α1,b(w))| > ϕ}
where M > α1,b(w) and 0 < ϕ < π

2 . Let Uα1,b(w) be the intersection of ∆α1,b(w)(M,ϕ) and the
neighborhood of α1,b(w), i.e.,

Uα1,b(w) = {z | 0 < |z − α1,b(w)| < r, | arg(z − α1,b(w))| > ϕ}.
Then we have limz→α1,b(w),z∈Uα1,b(w)

T1(z) = 0 and we transform eq. (3.6) into

∂z

∂T1,b
= T1,bG(T1,b, z) where(3.7)

G(T1,b, z) =
z(1− z)

(1− z)T 2
1,b − [1− z + bz2(wz − 1)]T1,b − bz2(1− z)

,(3.8)

with the initial condition z(0, w) = α1,b(w), which corresponds to the fact S1,b(α1,b(w), w) = ∞
resp. T1,b(α1,b(w), w) = 0. Here G(T1,b, z) is analytic at (0, α1,b(w)) and G(0, α1,b(w)) ̸= 0. By
expanding z(T1,b) at T1,b = 0, we obtain G(T1,b, z) with z ∈ Uα1,b(w) as an infinite polynomial of
T1,b. Based on this representation, eq. (3.7) has a unique solution of the form

1− z

α1,b(w)
= T 2

1,b · (c0(w) + c1(w)T1,b + · · · ) and c0(w) ̸= 0,

which leads to the solution of eq. (3.6), i.e.,

T1,b(z, w) =
∞∑
j=1

dj(w)

(
1− z

α1,b(w)

) j
2

and d1(w) ̸= 0,

by which we obtain the solution of eq. (3.5)

S1,b(z, w) =

(
1− z

α1,b(w)

)− 1
2

∞∑
j=0

ej(w)

(
1− z

α1,b(w)

) j
2

and e0(w) =
1

α1,b(w)

√
1

2b
̸= 0.(3.9)

This solution holds for z ∈ Uα1,b(w) and z = α1,b(w) is the unique dominant algebraic branching
point for any w ∈ (1− ϵ, 1 + ϵ). Now we shall show eq. (3.9) uniformly holds for any |w − 1| < ϵ.
According to Theorem 2, we have for w ∈ (1− ϵ, 1 + ϵ)∑

k≥1

E1,b
# (Sn,k)w

k = eo(w)Γ(
3

2
)n− 1

2α1,b(w)
−n(1 +O(

1

n
)).(3.10)

Both sides of eq. (3.10) are analytic at |w−1| < ϵ and they coincide for w ∈ (1−ϵ, 1+ ϵ), therefore
they are identical for |w − 1| < ϵ, namely eq. (3.9) holds uniformly for |w − 1| < ϵ. Finally we
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need Theorem 3 (Theorem IX.12 in [6]) to prove the Gaussian distribution of Xc,b
n , which can be

phrased as

Theorem 3. Let F (z, u) be a function that is bivariate analytic at (z, u) = (0, 0) and has non-
negative coefficients. Assume the following conditions:

(1) Analytic perturbation: there exist three functions A,B,C, analytic in a domain D = {|z| ≤
r} × {|u − 1| < ϵ}, such that for some small r0 with 0 < r0 ≤ r and ϵ > 0, the following
representation holds with α ̸∈ Z≤0

F (z, u) = A(z, u) +B(z, u)C(z, u)−α;

furthermore, assume that in |z| ≤ r, there exists a unique root ρ of the equation C(z, 1) = 0,
that this root is simple, and that B(ρ, 1) ̸= 0.

(2) Non-degeneracy: one has ∂zC(ρ, 1)·∂uC(ρ, 1) ̸= 0, ensuring the existence of a non-constant
ρ(u) analytic at u = 1, such that C(ρ(u), u) = 0 and ρ(1) = ρ.

(3) Variability σ∗( ρ(1)ρ(u) ) ̸= 0 where σ∗(f) = f ′′(1)
f(1) + f ′(1)

f(1) − ( f
′(1)
f(1) )

2.

Then the random variable with probability generating function pn(u) = [zn]F (z,u)
[zn]F (z,1) converges in

distribution to a Gaussian variable with a speed of convergence that is O(n− 1
2 ). The mean µn and

variance σ2
n are asymptotically linear in n.

Here in our case C(z, u) = 1 − z
α1,b(w) and α = 1

2 and we can compute the unique dominant

singularity α1,b(w) for w ∈ (1−ϵ, 1+ϵ) by rk45 methods, which indicates α1,b(w) is not a constant.
In particular, we obtain for b = 1, 2, α1,1(1) ≈ 0.597993 and α1,2(1) ≈ 0.583274. Furthermore, the
probability generating function of X1,b

n is∑
k≥1

E1,b
# (Sn,k)

E1,b
# (Sn)

wk =
e0(w)

e0(1)

[
α1,b(1)

α1,b(w)

]n
(1 +O(

1

n
)),

from which we can calculate the mean E(X1,b
n ) = n · (−α′

1,b(1)

α1,b(1)
) and variance σ2(X1,b

n ) = n ·
σ∗(

α1,b(1)
α1,b(w) ) asymptotically. On the other hand, mean E(X1,b

n ) and variance σ2(X1,b
n ) can also be

computed by differentiating at w on both sides of eq. (3.9) and setting w = 1 afterwards, which,
in combination of Theorem 2, gives

E(X1,1
n ) =

[zn]∂S1(z,w)
∂w

∣∣∣∣
w=1

[zn]S1(z, 1)
=

[zn]S1,w(z, 1)

[zn]S1(z, 1)
=

Γ( 12 )k0n
1
2α−n

1,b

Γ(32 )e0n
− 1

2α−n
1,b

(
1 + O(n−1)

)
= 0.1313n+ 0.1313 + O(n−1),

E(X1,2
n ) = 0.1462n+ 0.1460 + O(n−1).

σ(X1,1
n ) = 0.1871

√
n(1 + O(n−1)),

σ(X1,2
n ) = 0.1857

√
n(1 + O(n−1)).

Here – and in all the analysis that will follow – the constants have been determined numerically by
inspection of precise series coefficients. From the computation we can see variability σ∗(X1,b

n ) ̸= 0
and Theorem 3 tells us that X1,b

n is Gaussian distributed with mean and variance linear in n. We
next consider the case c = 2 thus setting c = 2 in eq. (3.2). We find

T2(z, w)

z
= b

∑
n≥3

∑
k≥1

1

(n+ 1)2
E2,b
# (Sn,k)w

kzn+1 +
∑
n≥1

b

(n+ 1)2
wzn+1.

In combination with eq. (3.3), we obtain for b ≥ 1 the functional identity for S2 = S2(z, w). Let

S′′
2 , S

′
2 denote ∂2S2(z,w)

∂2z , and ∂S2(z,w)
∂z , then

S′′
2 =

2

S2
(S′

2)
2 +

1

z
S′
2 +

S2

z2
+ (

b

1− z
(wz − 1)− 1

z2
)S2

2 + bS3
2 .(3.11)
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By substituting S2 = 1/u, we transform eq. (3.11) into

(3.12) u′′ =
1

z
u′ +

[
− b

u
+

1

z2
− b(wz − 1)

1− z
− u

z2

]
with initial condition u(0, w) = 1. First of all, z = 0 is a removable singularity of u(z, w).
Furthermore, the major contribution of u′′ can only be counteracted by − b

u , from which we are
assured that the dominant singularity is of log-algebraic type and the singular solution of eq. (3.12)
is
(3.13)

u(z, w) = (1− z

α2,b(w)
)

[
α2,b(w)

z
log(

1

1− z
α2,b(w)

)

] 1
2
[
a0 + a1(

α2,b(w)

z
log(

1

1− z
α2,b(w)

))−1 + · · ·

]

where w ∈ (1− ϵ, 1 + ϵ) and 1/u(z, w) has nonnegative coefficients. As a result, we can compute

1

z
u′ +

[
− b

u
+

1

z2
− b(wz − 1)

1− z
− u

z2

]
= log−

1
2 (

1

1− z
α2,b(w)

)
1

z − α2,b(w)
(
bα2,b(w)

a0
+ o(1))

u′′ = log−
1
2 (

1

1− z
α2,b(w)

)
1

z − α2,b(w)
(

a0
2α2,b(w)

+ o(1)).

In view of eq. (3.12), comparing the coefficients of the leading term yields,

a0(w) =
√
2b α2,b(w) > 0,(3.14)

and we shall analyze the singular expansion of S2(z, w) based on eq. (3.13), which gives

S2(z, w) = (1− z

α2,b(w)
)−1

[
α2,b(w)

z
log(

1

1− z
α2,b(w)

)

]− 1
2

(
1

a0(w)
+ O(

α2,b(w)

z
log(

1

1− z
α2,b(w)

))−1),

(3.15)

which holds for z ∈ Uα2,b(w) and z = α2,b(w) is the unique dominant singularity for any w ∈
(1− ϵ, 1 + ϵ). According to Theorem 2, we derive the n-th coefficients of S2(z, w) as∑

k≥1

E2,b
# (Sn,k)w

k =
1

a0(w)
(log n)−

1
2 (α2,b(w))

−n, n → ∞.(3.16)

Both sides of eq. (3.16) are analytic at |w−1| < ϵ and they coincide for w ∈ (1−ϵ, 1+ ϵ), therefore
they are identical for |w − 1| < ϵ, and thus eq. (3.15) holds uniformly for |w − 1| < ϵ. Finally we
will use Theorem 3 with a logarithmic multiplier to prove the Gaussian distribution of X2,b

n . Again
we can compute the unique dominant singularity α2,b(w) for w ∈ (1− ϵ, 1 + ϵ) by rk45 methods,
which indicates ρ(w) is not a constant. In particular, we obtain for b = 1, 2, α2,1(1) ≈ 0.765120
and α2,2(1) ≈ 0.680739. Furthermore, the probability generating function of X2,b

n is

∑
k≥1

E2,b
# (Sn,k)

E2,b
# (Sn)

wk =
a0(1)

a0(w)

[
α2,b(1)

α2,b(w)

]n
(1 +O(

1

log n
)),

from which we can calculate the mean E(X2,b
n ) = n · (−α′

2,b(1)

α2,b(1)
) and variance σ2(X2,b

n ) = n ·
σ∗(

α2,b(1)
α2,b(w) ) asymptotically. On the other hand, mean E(X2,b

n ) and variance σ2(X2,b
n ) can also be

computed by differentiating at w on both sides of eq. (3.9) and setting w = 1 afterwards, which,
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Figure 5. Plots of the average number of hairpins as a function of the structure’s
size n within our polymer-zeta model (b = 1 left, b = 2 right). The blue (resp. red)
line corresponds to case c = 1 (resp. c = 2), the greenish line shows the behavior
of native RNA secondary structures (as derived from the stochastic model from
[11]).

in combination of Theorem 2, gives

E(X2,1
n ) =

[zn]∂S2(z,w)
∂w

∣∣∣∣
w=1

[zn]S2(z, 1)
=

[zn]S2,w(z, 1)

[zn]S2(z, 1)
=

λ2,b n (log n)−
1
2α−n

2,b

(log n)−
1
2α−n

2,b

(
1 + O((log n)−1)

)
= 0.1202n+ 0.0376

n

log n
+ O(

n

log2 n
),

E(X2,2
n ) = 0.1458n+ 0.0259

n

log n
+ O(

n

log2 n
).

σ(X2,1
n ) = 0.2047

√
n(1 + O((logn)−1)),

σ(X2,2
n ) = 0.2022

√
n(1 + O((logn)−1)).

From the computation we can see variability σ∗(X2,b
n ) ̸= 0 and Theorem 3 tells us that X2,b

n is
Gaussian distributed with mean and variance linear in n. �

Figure 5 shows two plots of our results for the average number of hairpins for b = 1 (left) and
b = 2 (right). Assuming a continuous transition of the average number of hairpins when changing
parameter c from 1 to 2, the behavior for the case c = 1.5 (or c = 1.47) – which corresponds to
the real polymer-zeta property – should be located in the shaded area spanned by the two lines
depicted. As we can see, the number of hairpins in any of our polymer-zeta models is ways to
large compared to the native behavior.

4. Average length of hairpin-loops

Let Y c,b
n denote the random variable counting the total length of all hairpin-loops in a secondary

structure of size n in our polymer-zeta model with parameters c, b, and E(Y c,b
n ) (resp. σ(Y c,b

n )) be
the expectation (resp. standard deviation) of Y c,b

n . We have:

Theorem 4. Under the assumption of the (c, b)-polymer-zeta-model, c ∈ {1, 2}, the length of a
hairpin-loop in a secondary structure of size n is asymptotically Gaussian distributed with mean

E(Y 1,b
n )

E(X1,b
n )

= y1,b(1 + O(n−1)),
E(Y 2,b

n )

E(X2,b
n )

= y2,b(1 + O((log n)−1))

and standard deviation

σ(Y 1,b
n ) =

y1,b√
n
(1 + O(n−1)), σ(Y 2,b

n ) =
y2,b√
n
(1 + O((log n)−1))
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where yc,b and yc,b are positive constants. For b = 1, 2, we have

(y1,1, y
′
1,1) ≈ (1.7262, 3.6003) (y1,2, y

′
1,2) ≈ (1.5291, 3.5570)

(y2,1, y
′
2,1) ≈ (1.7367, 3.3058) (y2,2, y

′
2,2) ≈ (1.5467, 3.0230)

Since the proof of this and all the subsequent theorems pretty much proceed along the same
lines as the previous one, we have moved them to the appendix. We assume this paper to be a
nicer read when leaving out the ever repeating same mathematical arguments, focusing on the
interpretation of our findings.

Compared to the hairpin length observed for stochastic model from [11], we observe no choice
for the parameters c, b which comes close to a fit. This might be related to the assumption of
a minimal hairpin-loop length of 1 in our analysis. However, the largest loops are observed for
c = 2, b = 1 where the averaged length is given by 1.7367. Adding a constant of 2 – which could
be assumed to overestimate the result for a polymer-zeta model with a minimal loop length of 3
– would still result in a too small length of loop. Thus we can conclude, the our model will not
behave realistically with respect to the expected length of hairpin loops.
Considering the total number of unpaired nucleotides residing in hairpin-loops by multiplying
expected length and number brings model and real world molecules closer together. We find
about 0.1667n unpaired nucleotides in hairpins for the native and about 0.2257n for the (1, 2)-
polymer-zeta structures. Thus, in total the number of unpaired nucleotides inside hairpin-loops is
overestimated by about 6% within our model. It will be interesting to see, how the overall number
of unpaired position behaves in comparison of the (c, b)-polymer-zeta-model and native molecules.

5. Number of unpaired bases

Let U c,b
n denote the random variable counting the number of unpaired bases found in a secondary

structure of size n according to the (c, b)-polymer-zeta-model, and E(U c,b
n ) (resp. σ(U c,b

n )) be the
expectation (resp. standard deviation) of U c,b

n . We have:

Theorem 5. Under the assumption of the (c, b)-polymer-zeta-model, c ∈ {1, 2}, the number of
unpaired bases in a secondary structure of size n is asymptotically Gaussian distributed with mean

E(U1,b
n ) = u1,bn(1 + O(n− 1

2 )), E(U2,b
n ) = u2,bn(1 + O((log n)−

1
2 ))

and standard deviation

σ(U1,b
n ) = u′

1,b

√
n(1 + O(n− 1

2 )), σ(U2,b
n ) = u′

2,b

√
n(1 + O((log n)−

1
2 ))

where uc,b and u′
c,b are positive constants. For b = 1, 2, we have

(u1,1, u
′
1,1) ≈ (0.5918, 0.4410) (u1,2, u

′
1,2) ≈ (0.5266, 0.4256)

(u2,1, u
′
2,1) ≈ (0.7046, 0.4605) (u2,2, u

′
2,2) ≈ (0.6323, 0.4507).

It is obvious that for all the choices (c, b) considered here, the number of unpaired bases is too
large compared to native RNA molecules. There we observe about 45% of unpaired nucleotides
for tRNA and roughly 52% for large subunit rRNAs (based on which the results of [11] have
been derived). In connection with only about 6% of supernumerous unpaired positions within the
hairpin-loops, the total of up to 25% superfluous unpaired nucleotides could be explained by either

• other loops like bulges or interior-loops being longer than in native molecules, or
• loops in general being observed more often (as already proven for hairpin-loops) within
our model than in nature.

The second possibility would imply that secondary structures look scattered in our polymer-
zeta model in the sense that stems are way too short and often interrupted by runs of unpaired
nucleotides. We will continue to analyze structural motifs like bulges and interior loops in order
to identify which explanation applies.
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Figure 6. Plots of the average number of bulges as a function of the structure’s
size n within our polymer-zeta model (b = 1 left, b = 2 right). The blue (resp. red)
line corresponds to case c = 1 (resp. c = 2), the greenish line shows the behavior
of native RNA secondary structures (as derived from the stochastic model from
[11]).

6. The average number of bulges

A bulge of length ℓ is defined as a sequence of ℓ ≥ 1 unpaired positions sb+1, sb+2, · · · , sb+ℓ

that are in between two nested arcs (sa, sb+ℓ+1) and (sa+1, sb), or arcs (sb+ℓ+1, sa) and (sb, sa+1).
For Sn,k the class of secondary structures of size n with k bulges n ≥ 3k + 3 must hold. Let Bc,b

n

denote the random variable counting the number of bulges found in a secondary structure of size n
according to the (c, b)-polymer-zeta-model, and E(Bc,b

n ) (resp. σ(Bc,b
n )) be the expectation (resp.

standard deviation) of Bc,b
n . We find:

Theorem 6. Under the assumption of the (c, b)-polymer-zeta-model, c ∈ {1, 2}, the number of
bulges in a secondary structure of size n is asymptotically Gaussian distributed with mean

E(B1,b
n ) = β1,b n(1 + O(n−1)), E(B2,b

n ) = β2,b n(1 + O((log n)−1))

and standard deviation

σ(B1,b
n ) = β′

1,b

√
n(1 + O(n−1)), σ(B2,b

n ) = β′
2,b

√
n(1 + O((log n)−1))

where βc,b and β′
c,b are positive constants. For b = 1, 2, we have

(β1,1, β
′
1,1) ≈ (0.0210, 0.1379) (β1,2, β

′
1,2) ≈ (0.0261, 0.1517)

(β2,1, β
′
2,1) ≈ (0.0076, 0.0848) (β2,2, β

′
2,2) ≈ (0.0113, 0.1024).

Figure 6 shows a plot of the averages just derived in comparison to the native behavior of RNA
molecules (as indicated by the results from [11]). We observe that for b = 1, the behavior of our
polymer-zeta model nicely fits with natural RNAs; for b = 2 the model slightly overestimates the
number of bulges. Thus the number of bulges cannot explain the large spread for the number of
unpaired positions. Next we will consider the length of bulges.

7. The average length of bulges

Let Lc,b
n denote the random variable counting the total length of all the bulges (-loop) found

in a secondary structure of size n according to the (c, b)-polymer-zeta-model, and E(Lc,b
n ) (resp.

σ(Lc,b
n )) be the expectation (resp. standard deviation) of Lc,b

n . We have:

Theorem 7. Under the assumption of the (c, b)-polymer-zeta-model, c ∈ {1, 2}, the length of a
bulge in a secondary structure of size n is asymptotically Gaussian distributed with mean

E(L1,b
n )

E(B1,b
n )

= l1,b(1 + O(n−1)),
E(L2,b

n )

E(B2,b
n )

= l2,b(1 + O((log n)−1))
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Figure 7. Plot of the average number of interior loops as a function of the
structure’s size n within our polymer-zeta model (b = 1 left, b = 2 right). The
blue (resp. red) line corresponds to case c = 1 (resp. c = 2), while those lines
connected by the blue (resp. yellow) shading correspond to case b = 1 (resp.
b = 2). The greenish line shows the behavior of native RNA secondary structures
(as derived from the stochastic model from [11]).

and standard deviation

σ(L1,b
n )

E(B1,b
n )

=
l′1,b√
n
(1 + O(n−1)),

σ(L2,b
n )

E(B2,b
n )

=
l′2,b√
n
(1 + O((log n)−1))

where lc,b and l′c,b are positive constants. For b = 1, 2,

(l1,1, l
′
1,1) ≈ (2.0476, 16.7438) (l1,2, l

′
1,2) ≈ (1.7625, 12.3834)

(l2,1, l
′
2,1) ≈ (2.4079, 35.4115) (l2,2, l

′
2,2) ≈ (2.0354, 23.3449).

Comparing our findings to the average bulge length observed for native molecules we have to
conclude an almost realistic behavior of our polymer-zeta model; it slightly overestimates the
length of bulges for all choices of (c, b). However, the slightly larger length and number of bulges
in our model are not sufficient to explain the overall too large number of unpaired positions. Even
worth, their effect is counteracted by the interior loops which will turn out to be shorter.

8. Average number of interior loops

A single interior loop consists of two non-empty runs of unpaired bases sa+1, · · · , sa+ℓ1 , and
sb+1, · · · , sb+ℓ2 , a < b, together with the base pairs (sa, sb+ℓ2+1) and (sa+ℓ1+1, sb). Let I

c,b
n denote

the random variable counting the number of interior loops found in a secondary structure of size
n according to the (c, b)-polymer-zeta-model, and E(Ic,bn ) (resp. σ(Ic,bn )) be the expectation (resp.
standard deviation) of Ic,bn . The following theorem holds:

Theorem 8. Under the assumption of the (c, b)-polymer-zeta-model, c ∈ {1, 2}, the number of
interior loops in a secondary structure of size n is asymptotically Gaussian distributed with mean

E(I1,bn ) = i1,b n(1 + O(n−1)), E(I2,bn ) = i2,b n(1 + O((log n)−1))

and standard deviation

σ(I1,bn ) = i′1,b
√
n(1 + O(n−1)), σ(I2,bn ) = i′2,b

√
n(1 + O((log n)−1))

where ic,b and i′c,b are positive constant. For b = 1, 2, we have

(i1,1, i
′
1,1) ≈ (0.0110, 0.0996) (i1,2, i

′
1,2) ≈ (0.0099, 0.0954)

(i2,1, i
′
2,1) ≈ (0.0055, 0.0706) (i2,2, i

′
2,2) ≈ (0.0059, 0.0739).

Figure 7 shows a plot of the averages just presented together with the native behavior of the
number of interior loops. We observe that in the (c, b)-polymer-zeta-model (for all choices of
(c, b)), the number of interior loops is observably smaller than in native molecules. Accordingly,
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if the average length of interior loops within the model is not notably larger than for real world
molecules the large number of unpaired bases sill remains unexplained.

9. The average length of interior loops

We define the length of an interior loop to be the sum of the sizes of both its runs of unpaired
positions (given by ℓ1 + ℓ2 according to our definition of an interior loop). Let P c,b

n denote the
random variable counting the total length of interior loops found in a secondary structure of size n
according to the (c, b)-polymer-zeta-model, and E(P c,b

n ) (resp. σ(P c,b
n )) be the expectation (resp.

standard deviation) of P c,b
n . We have:

Theorem 9. Under the assumption of the (c, b)-polymer-zeta-model, c ∈ {1, 2}, the average
length of a single interior loop found in a secondary structure of size n is asymptotically Gaussian
distributed with mean

E(P 1,b
n )

E(I1,bn )
= p1,b(1 + O(n−1)),

E(P 2,b
n )

E(I2,bn )
= p2,b(1 + O((log n)−1))

and standard deviation

σ(P 1,b
n )

E(I1,bn )
= p′1,b

1√
n
(1 + O(n−1)),

σ(P 2,b
n )

E(I2,bn )
= p′2,b

1√
n
(1 + O((logn)−1))

where pc,b and p′c,b are positive constants. For b = 1, 2, we have

(p1,1, p
′
1,1) ≈ (4.2364, 43.5036) (p1,2, p

′
1,2) ≈ (3.6162, 38.7243)

(p2,1, p
′
2,1) ≈ (5.3455, 81.0401) (p2,2, p

′
2,2) ≈ (4.4068, 63.1238).

In summary for all choices of (c, b) considered here, both the number and the length of interior
loops within our polymer-zeta model is smaller than observed for real RNA molecule. Accordingly,
interior loops cannot explain the large number of unpaired nucleotides observed in our model.

10. The average number of multiloops

A multiloop results, if at least two irreducible secondary (sub-) structures are enclosed by
an arc. The number of irreducible structures below that arc plus one is called the degree of
the multiloop. Let M c,b

n be the random variable counting the number of multiloops found in
a secondary structure of size n according to the (c, b)-polymer-zeta-model, and E(M c,b

n ) (resp.
σ(M c,b

n )) be the expectation (resp. standard deviation) of M c,b
n . We have:

Theorem 10. Under the assumption of the (c, b)-polymer-zeta-model, c ∈ {1, 2}, the number of
multiloops found in a secondary structure of size n is asymptotically Gaussian distributed with
mean

E(M1,b
n ) = m

(1)
1,b n+m

(2)
1,b + O(n−1), E(M2,b

n ) = m
(1)
2,b n+m

(2)
2,b

n

log n
+ O(

n

log2 n
)

and standard deviation

σ(M1,b
n ) = m′

1,b

√
n(1 + O(n−1)), σ(M2,b

n ) = m′
2,b

√
n(1 + O((log n)−1))

where mc,b and m′
c,b are positive constants. For b = 1, 2, we have

(m
(1)
1,1,m

(2)
1,1,m

′
1,1) ≈ (0.0330,−0.4683, 0.1188) (m

(1)
1,2,m

(2)
1,2,m

′
1,2) ≈ (0.0390,−0.4618, 0.1277)

(m
(1)
2,1,m

(2)
2,1,m

′
2,1) ≈ (0.0112, 0.0024, 0.0730) (m

(1)
2,2,m

(2)
2,2,m

′
2,2) ≈ (0.0220,−0.0521, 0.0872).

Figure 8 compares the average number of multiloops in our polymer-zeta model to that of native
RNA molecules. Only the behavior of the (2, 1)-polymere-zeta-model comes close to the native
characteristics. For all the other parameter choices, model and reality are in no agreement at all.
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Figure 8. Plot of the average number of multiloops as a function of the struc-
ture’s size n within our polymer-zeta model (b = 1 left, b = 2 right). The blue
(resp. red) line corresponds to case c = 1 (resp. c = 2), while those lines connected
by the blue (resp. yellow) shading correspond to case b = 1 (resp. b = 2). The
greenish line shows the behavior of native RNA secondary structures (as derived
from the stochastic model from [11]).

11. Average degree of multiloops

As already explained before, the degree of a multiloop is given by one plus the number of
irreducible substructures embedded below its closing arc. Accordingly, let Dc,b

n denote the random
variable counting the total degree of all the multiloops found in a secondary structure of size n
according to the (c, b)-polymer-zeta-model, and E(Dc,b

n ) (resp. σ(Dc,b
n )) be the expectation (resp.

standard deviation) of Dc,b
n . We find the following theorem:

Theorem 11. Under the assumption of the (c, b)-polymer-zeta-model, c ∈ {1, 2}, the degree of
a multiloop found in a secondary structure of size n is asymptotically Gaussian distributed with
mean

E(D1,b
n )

E(M1,b
n )

= d1,b(1 + O(n− 1
2 )),

E(D2,b
n )

E(M2,b
n )

= d2,b(1 + O((log n)−
1
2 ))

and standard deviation

σ(D1,b
n )

E(M1,b
n )

= d′1,b
1√
n
(1 + O(n− 1

2 )),
σ(D2,b

n )

E(M2,b
n )

= d′2,b
1√
n
(1 + O((log n)−

1
2 ))

where dc,b and d′c,b are positive constants. For b = 1, 2, we have

(d1,1, d
′
1,1) ≈ (5.9848, 14.0273) (d1,2, d

′
1,2) ≈ (5.5615, 12.6077)

(d2,1, d
′
2,1) ≈ (12.5536, 25.9643) (d2,2, d

′
2,2) ≈ (8.3636, 16.3182).

We observe a rather realistic behavior of our model which for c = 1 and b ∈ {1, 2} underestimates
the average degree of a multiloop by only about 3

10 .
However, we so far have no good explanation for the large number of unpaired nucleotides

as well as the large number of hairpins in our polymer-zeta model. Therefore, we continue our
analysis by studying the structure of the exterior loop. Here, the number and length of single
stranded regions are of interest.

12. The total length of single stranded regions of the exterior loop

In a secondary structure the exterior loop consists of all positions that are not enclosed by any
arc (does not lie in between any base pair). Accordingly, the exterior loop is not empty if any
only if we are not dealing with an irreducible structure. On the other hand, a non-empty exterior
loop consists of an alternation of single stranded (unpaired) nucleotides and irreducible structures,
where for the latter the outermost arc is assumed to be part of the exterior loop. Note, that this
way of decomposing an arbitrary secondary structure along its exterior loop gave rise to eq. (3.3).
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Now let Ec,b
n denote the random variable counting the total number of unpaired positions

residing in the exterior loop of a secondary structure of size n according to the (c, b)-polymer-zeta-
model, and E(Ec,b

n ) (resp. σ(Ec,b
n )) be the expectation (resp. standard deviation) of Ec,b

n . Here the
limiting distribution of Ec,b

n is different to the parameters we discussed before since the dominant
singularity is a constant for |w − 1| < ϵ. However, we can explicitly estimate any r-factorial
moment of Ec,b

n . We have:

Theorem 12. Under the assumption of the (c, b)-polymer-zeta-model, c ∈ {1, 2}, the average
number of unpaired positions residing in the exterior loop of a secondary structure of size n is
asymptotically given by

E(E1,b
n ) = r1,bn

1
2 (1 + O(n− 1

2 )), E(E2,b
n ) = r2,bn(log n)

− 1
2 (1 + O((log n)−1))

with standard deviation

σ(E1,b
n ) = r′1,b n

1
2 (1 + O(n− 1

2 )), σ(E2,b
n ) = r′2,b n(log n)

− 1
2 (1 + O((log n)−1))

where rc,b and r′c,b are positive constants. Furthermore, for c = {1, 2}, the r-th factorial moment

of Ec,b
n is

E(E1,b
n (E1,b

n − 1) · · · (E1,b
n − r + 1)) = r!(2b)−

r
2
(n− r)

r+1
2 −1

n− 1
2

Γ( 12 )

Γ( r+1
2 )

(1 +O(
1

n
))

E(E2,b
n (E2,b

n − 1) · · · (E2,b
n − r + 1)) = r!(2b)−

r
2
(n− r)r

Γ(r + 1)

(log(n− r))−
r+1
2

(log n)−
1
2

(1 +O(
1

log n
)).

where for b = 1, 2, we have

(r1,1, r
′
1,1) ≈ (1.2066, 0.6842) (r1,2, r

′
1,2) ≈ (0.8668, 0.5254)

(r2,1, r
′
2,1) ≈ (0.7978, 0.2411) (r2,2, r

′
2,2) ≈ (0.5974, 0.2000).

Note that for the first time during our analysis we observe a change of the rate of grows when
switching from c = 1 to c = 2. Nevertheless, as claimed for all the other parameters, the behavior
for c = 1.5, i.e., in case of the true parameter choice as determined by theory, smoothly fits into
the interval spanned by our formulæ, see Figure 9. As a consequence, we have to assume the
average number of unpaired bases within the exterior loop to lie in the interval [

√
n, n/

√
log n]

(modulo constant factors). This is an important observation since for native secondary structures
the total number of unpaired bases in the exterior loop behaves different – here quite often long
spanning interactions are of importance which give rise a short 5’–3’ distance for the molecule and
to fewer single strands in the exterior loop; however long spanning interactions are rather unlikely
in the polymer-zeta model. For instance, LSU rRNAs with an average length of 2311 (as derived
from the database of Wuyts [15]) show in the mean about 112 unpaired nucleotides within the
exterior loop, see Figure 9. For tRNA – even if being a rather special family of molecules – we
observe an average of 2.2 [13]. In connection with the rate of growth observed for c = 1.5 by
simulations and in comparison to the statistics derived from databases, we are willing to believe
that the number of unpaired positions is notably overestimated within our polymer-zeta model.
Accordingly, the large number of unpaired positions in our model can most likely be explained by
the growing lengths and/or number of the single stands in the exterior loop. This conclusion also
explains the large number of hairpin loops observed .

Finally, let P c,b
n denote the random variable counting the total number of irreducible structures

residing in the exterior loop of a secondary structure of size n according to the (c, b)-polymer-zeta-
model, and E(P c,b

n ) (resp. σ(P c,b
n )) be the expectation (resp. standard deviation) of P c,b

n .

Theorem 13. Under the assumption of the (c, b)-polymer-zeta-model, c ∈ {1, 2}, the average
degree of the exterior found in a secondary structure of size n is asymptotically given by

E(P 1,b
n ) = p1,bn

1
2 (1 + O(n−1)), E(P 2,b

n ) = p2,bn(log n)
− 1

2 (1 + O((log n)−1))

with standard deviation

σ(P 1,b
n ) = p′1,b n

1
2 (1 + O(n−1)), σ(P 2,b

n ) = p′2,b n
1
2 (log n)−

1
4 (1 + O((log n)−1))
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Figure 9. Plot of the average number of unpaired nucleotides in the exterior
loop as a function of the structure’s size n within our polymer-zeta model. The
two upper (resp. lower) graphics show the case b = 1 (resp. b = 2) where the blue
(resp. red) line in each case corresponds to case c = 1 (resp. c = 2). The red dots
in the left plots show the average of 112 unpaired nucleotides observed for the
exterior loop of LSU rRNAs (as determined from [15]; the corresponding average
size of molecules is 2311). The dotted black lines of the right plots correspond to
simulation results performed for the case c = 1.5 and the choices b = 1 (top) and
b = 2 (bottom).

where pc,b and p′c,b are positive constants. Furthermore, for c = {1, 2}, the r-th factorial moment

of P c,b
n is

E(P 1,b
n (P 1,b

n − 1) · · · (P 1,b
n − r + 1)) =

[zn]∂r
wS1(z, w)|w=1

[zn]S1(z, 1)

= r!(2b)−
r
2 (

1

α1,b
− 1)rn

r
2

Γ( 12 )

Γ( r+1
2 )

(1 +O(
1

n
)),

E(P 2,b
n (P 2,b

n − 1) · · · (P 2,b
n − r + 1)) =

[zn]∂r
wS2(z, w)|w=1

[zn]S2(z, 1)

= r!(2b)−
r
2 (

1

α2,b
− 1)r

nr

Γ(r + 1)
(log n)−

r
2 ,

where for b = 1, 2, we have

(p1,1, p
′
1,1) ≈ (0.8426, 0.4404) (p1,2, p

′
1,2) ≈ (0.6332, 0.3310),

(p2,1, r
′
2,1) ≈ (0.2171, 0.4659) (p2,2, p

′
2,2) ≈ (0.2345, 0.4842).

Remark: With this result, we can show that in our model the so-called conservation law holds.
According to that law, the number of hairpins should equal the number of multiloops times the
average number of irreducible structures within the multiloop minus one (i.e. according to our
definition the average degree of a multiloop minus two) plus the degree of the exterior loop. With
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the notation used in this paper, we have to consider

E(Xc,b
n ) = E(Dc,b

n )− 2E(M c,b
n ) + E(P c,b

n )

and find for example in case of (c, b) = (1, 1) (using the representations for the respective expected
values as given in the proofs found in the Appendix where one can partly find lower order terms,
too)

E(X1,1
n )− E(D1,1

n ) + 2E(M1,1
n )− E(P 1,1

n )

= 0.1313n− 0.1975n+ 2× 0.0330n+ 0.8428
√
n− 0.8425

√
n ≈ 0.

Note that we cannot assume to observe a precise value of 0 since the constants within our asymp-
totic formulae have been determined by numerical means.

13. Conclusions

In this paper we have shown, that in [14] the authors made faulty use of the polymer-zeta
model when analyzing their algorithm CandidateFold and the efficiency of sparsification. Their
mistake was to apply unconditioned probabilities where a conditioning on a base pair to constitute
the outermost pair of an irreducible structure would have been needed. In order to see, if it is
realistic to assume that such conditional probabilities still behave in a polymer-zeta style, i.e.,
behave like b

dc for some constants b and c, we introduce a corresponding probability model for
RNA secondary structures and examined the resulting expected shape of RNA foldings. To this
end, for different choices of (c, b) we determined the average behavior of various structural motives
like the number and length of hairpin-, bulge- and interior-loops as well as the number of unpaired
bases, the number and average degree of multiloops and the number of unpaired positions residing
in the exterior loop. We also proved related standard deviations and for most of the considered
parameters to follow a Gaussian distribution.

Compared to the results from [11] – which have proven to nicely reflect the native behavior of
RNA – and in light of some statistics computed from RNA databases we observe many parameters
in our model to behave almost realistic with respect to both, rate of growth and constants involved.
For the number of unpaired bases and the number and length of hairpin loops we experience the
opposite: the first two being too large, the third ways too small. Nevertheless, the rate of grows in
those three cases is still equal for model and native molecules. To this end, the average number of
unpaired nucleotides residing in the exterior loop is special. Here we observe in the model a growth
depending on n opposed to a (presumably) constant behavior in real RNAs. This result however
also nicely explains the overestimated number of hairpin loops: All our findings make perfect
sense if we assume a typical secondary structure in our polymer-zeta model to mostly behave like
a sequence of (relatively small) cloverleaf like structures (to be understood as synonym for simple
structures without much nesting) emerging one after the other out of the structure’s backbone
(i.e., emerging from the exterior loop). Accordingly, a large number of bases reside in lots of single
strands (

√
n many as we have proved) in the exterior loop and – because of missing nesting –

almost all stems contribute to the number of hairpins. However, parameters like the number and
length of bulges and interior loops or the degree of multiloops can still behave realistic (inside the
cloverleaf like structures). This also coincides with the discussion from [14], where mRNA data,
for which most parts are unpaired and only seldom a simple stem or hairpin can be observed, has
been considered. All in all, we conclude that for most families of RNA our polymer-zeta model
cannot be assumed realistic. This discovery brings us back to the motivation of our analysis taken
from [14]. We conclude that for most families of RNA it is unrealistic to assume the conditional
probabilities (as needed to conclude a quadratic running time for CandidateFold) for span d
base pairs to behave like b

dc .
Of course, one could think of choices for b and c other than those assumed for our analysis,

hoping for a realistic behavior of the corresponding polymer-zeta model. However, the following
needs to be considered:
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(1) A choice for c < 1 would increase the probability for long distance interactions, but at the
same time implies a running-time for the CandidateFold algorithm strictly worse than
n2. Therefore, this should not be considered a valid choice for our application.

(2) Choices c > 2 will imply an even smaller probability for long distance interactions and thus
would lead to a continued degeneration of the exterior loop and a growth of the already
too large number of unpaired positions.

(3) Large values for b may be used to introduce high pairing probabilities even for far apart nu-
cleotides. However, since b is constant this can hardly counteract varying sizes of molecules
and the corresponding grows of potential distances of two nucleotide positions. Even worse,
large values for b imply values strictly larger 1 for some pairing probabilities b/dc. To work
around this problem, the minimal hairpin-loop length must be chosen at least b1/c, which
should not be considered beneficial for the model’s quality.

We conclude that the (c, b)-polymer-zeta-model can not be assumed to go along with native families
of RNA even for parameter choices not investigated here in detail.

To the best of our knowledge, this is the first paper presenting an analysis of structural pa-
rameters for random RNA secondary structures in our polymer-zeta model. Even if we attacked
quite a number of parameters, some questions remain open. Most importantly it would be infor-
mative to get access to the expected order of secondary structures in our model. This parameter
is related to the (balanced) nesting depth of hairpins and has been analyzed e.g. in [9, 10] for the
combinatorial and the Bernoulli model of RNA structure. Corresponding results (proving a small
expected order) would help to strengthen our interpretation of present results. Last but not least
it could be interesting to restrict the model to saturated foldings, i.e., to foldings where no arc can
be inserted without violating the definition of secondary structures. This change could counteract
the large number of unpaired positions. However, it is not quite clear how saturation could be
incorporated into our model.
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14. Appendix

In the sequel, we will present all the proofs left open in the main part of that paper. To this
end we shall use Tn,k resp. Sn,k to denote the class of irreducible secondary structures resp. sec-
ondary structures of size n with the parameter currently under consideration (changes in different
subsections) being equal to k. A single structure from that class will be denoted Tn,k resp. Sn,k.
Accordingly, we will reuse generating functions T (z, w) and S(z, w), which in different subsections
will have different meanings; however, they will always be associated with classes of structures
Tn,k and Sn,k just considered, using variable w to keep track of the parameter discussed in the
respective subsection. Furthermore, we will index the generating functions by i, i.e., use Ti resp.
Si, in order to indicate that the corresponding representation of T (z, w) resp. S(z, w) assumes
parameter choice c = i and let αc,b(w) be the dominant singularity for S(z, w) and T (z, w) for
the different parameter choices. If furthermore indexed by variable z or w, this is used to denote
the partial derivative of the generating function with respect to that variable. This way, S1,w

for example will be used to represent the partial derivative with respect to w of the generating
function associated to Sn,k assuming c = 1.

Proof of Theorem 4.

Proof. Let Sn,k denote the class of secondary structures of size n and a total number of k unpaired
positions residing in a hairpin-loop, then we have

E(Y c,b
n ) =

∑
k≥1

k ·
Ec,b
# (Sn,k)

Ec,b
# (Sn)

/
E(Xc,b

n ).

Here we shall follow the same line of thoughts as for the average number of hairpin loops and we
will omit some details if appropriate. The first step is to find a functional identity of the bivariate
generating function associated to Sn,k, i.e.,

Sc(z, w) =
∑
n≥3

∑
k≥1
k ̸=n

Ec,b
# (Sn,k)w

kzn +
1

1− z
.

In connection with the corresponding irreducible structures Tn,k we find for the case n ̸= k ≥ 1,

Ec,b
# (Tn+2,k) =

b

(n+ 1)c
· Ec,b

# (Sn,k),(14.1)

and for the case k = n,

Ec,b
# (Tn+2,n) =

b

(n+ 1)c
.

Let Tc(z, w) be the corresponding double generating function of Tn+2,k. Based on eq. (14.1), we
have

Tc(z, w) =
∑
n≥3

∑
k≥1
k ̸=n

b

(n+ 1)c
· Ec,b

# (Sn,k)w
kzn+2 +

∑
n≥1

b

(n+ 1)c
wnzn+2.(14.2)

On the other hand, eq. (3.3) also holds in connection with S(z, w) and T (z, w) as defined for this
proof. Again, we start our analysis from the case c = 1. Dividing by z and differentiating with
respect to z on both sides of eq. (14.2), using eq. (3.3), we find

(
T1(z, w)

z
)z = b

∑
n≥3

∑
k≥1
k ̸=n

E1,b
# (Sn,k)w

kzn + b
∑
n≥1

wnzn

= b(S1(z, w)−
1

1− z
) +

bwz

1− wz
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and for S1,b = S1,b(z, w),

∂S1,b

∂z
= −1

z
S1,b +

[
1

z
− bz

1− z
+

bwz2

1− wz

]
S2
1,b + bzS3

1,b.(14.3)

As the proof for Theorem 1, for z ∈ Uα1,b(w) and |w − 1| < ϵ, the singular expansion of S1,b(z, w)
is of the same type as eq. (3.9) except for the constants ej(w). By again applying Theorem 2 and
3, we can conclude

E(Y 1,1
n )

E(X1,1
n )

=
0.2289

0.1326

(
1 + O(n−1)

)
= 1.7262

(
1 + O(n−1)

)
,

E(Y 1,2
n )

E(X1,2
n )

=
0.2257

0.1476

(
1 + O(n−1)

)
= 1.5291

(
1 + O(n−1)

)
.

σ(Y 1,1
n )

E(X1,1
n )

=
0.4774

0.1326
√
n

(
1 + O(n−1)

)
=

3.6003√
n

(
1 + O(n−1)

)
,

σ(Y 1,2
n )

E(X1,2
n )

=
0.2257

0.1476
√
n

(
1 + O(n−1)

)
=

3.5570√
n

(
1 + O(n−1)

)
.

For the case c = 2, let S′′
2 , S

′
2 denote ∂2S2(z,w)

∂2z , and ∂S2(z,w)
∂z , then the functional identity for

S2(z, w) = S2 is

S′′
2 =

2

S2
(S′

2)
2 +

S′
2

z
+ bS3

2 −
[

b

1− z
− b

wz

1− wz
+

1

z2

]
S2
2 +

S2

z2
.(14.4)

By substituting S2 = 1/u, eq. (14.4) is transformed into

u′′ =
1

z
u′ +

[
− b

u
+

1

z2
+

b

1− z
− bwz

1− wz
− u

z2

]
,

from which we have the singular expansion of S2(z, w) that is the same as eq. (3.15) except the
constant a0(w). By applying Theorem 2 and 3, we obtain

E(Y 2,1
n )

E(X2,1
n )

=
0.2150

0.1238
(1 + O(log n)−1) = 1.7367(1 + O(log n)−1),

E(Y 2,2
n )

E(X2,2
n )

=
0.2303

0.1489
(1 + O(log n)−1) = 1.5467(1 + O(log n)−1).

σ(Y 2,1
n )

E(X2,1
n )

=
0.4093

0.1238
√
n

(
1 + O(log n)−1

)
=

3.3058√
n

(
1 + O(log n)−1

)
,

σ(Y 2,2
n )

E(X2,2
n )

=
0.4501

0.1489
√
n

(
1 + O(log n)−1

)
=

3.0230√
n

(
1 + O(log n)−1

)
.

Henceforth Theorem 4 follows. �

Proof of Theorem 5. In contrast to the hairpin case, we shall in the sequel use the generating
functions for the irreducible secondary structures directly to determine the average number of
unpaired bases, number and length of bulges, number and length of interior loops, number and
degree of multiloops and the number of unpaired nucleotides in the exterior loop.

Proof. The class Tn+2 of irreducible structures of size n+ 2 can be decomposed according to the
following cases:

(1) The outermost arc (s1, sn+2) encloses a run of unpaired positions (each contributing to
our parameter), or

(2) the outermost arc (s1, sn+2) encloses a sequence of alternating unpaired regions and irre-
ducible structures (where the former all contribute to our parameter directly and the later
are considered recursively).
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Note that the second case already has been used to derive eq. (3.3). Denoting by T1(z, w) = T1

the bivariate generating function for E1,b
# (Tn+2,k), n ≥ 1, k ≥ 0, where each unpaired position is

marked by w, we find by using above decomposition

(
T1

z
)z = b

∑
i≥1

(
1

1− wz
)i+1 × T i

1

+
bwz

1− wz

=
b

1− zw − T1
− b,

which can be simplified as

∂T1(z, w)

z∂z
− T1(z, w)

z2
=

b

1− zw − T1(z, w)
− b.

By the same analysis as for Theorem 1, we have the dominant term in the singular expansion of
T1(z, w) is of type (1− z

α1,b(w) )
1
2 . According to the functional composition for subcritical case, the

singular expansion of S1,b(z, w) is of the same type as eq. (3.9) except for the constants ej(w). By
applying Theorem 2 and 3, we finally obtain

E(U1,1
n ) =

[zn]∂S1(z,w)
∂w

∣∣∣∣
w=1

[zn]S1(z, 1)
=

[zn]S1,w(z, 1)

[zn]S1(z, 1)

= 0.5918n
(
1 + O(n− 1

2 )
)
,

E(U1,2
n ) = 0.5266n

(
1 + O(n− 1

2 )
)
.

σ(U1,1
n ) = 0.4410

√
n
(
1 + O(n− 1

2 )
)

σ(U1,2
n ) = 0.4256

√
n
(
1 + O(n− 1

2 )
)

Next we consider the case c = 2. Using the same line of reasoning as for c = 1 now taking twice
the partial derivative with respect to z in order to cancel the denominator (n+ 1)2 we find

(z(
T2

z
)z)z = b

∑
i≥1

T i
2(

1

1− wz
)i+1

+
bwz

1− wz

=
b

1− zw − T2
− b,

which can be simplified as

∂2T2(z, w)

∂z2
− ∂T2(z, w)

z∂z
+

T2(z, w)

z2
=

b

1− zw − T2(z, w)
− b.

By the same analysis as for Theorem 1, we have the dominant term in the singular expansion of

T2(z, w) is of type (1− z
α2,b(w) )(

α2,b(w)
z log( 1

1− z
α2,b(w)

))
1
2 , from which we have the singular expansion

of S2(z, w) that is the same as eq. (3.15) except the constant a0(w). By applying Theorem 2 and
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3, we can derive

E(U2,1
n ) =

[zn]∂S2(z,w)
∂w

∣∣∣∣
w=1

[zn]S2(z, 1)
=

[zn]S2,w(z, 1)

[zn]S2(z, 1)

= 0.7046n
(
1 + O((log n)−

1
2 )
)
,

E(U2,2
n ) = 0.6323n

(
1 + O((log n)−

1
2 )
)
.

σ(U2,1
n ) = 0.4605

√
n
(
1 + O((logn)−

1
2 )
)
,

σ(U2,2
n ) = 0.4507

√
n
(
1 + O((logn)−

1
2 )
)
.

Therefore Theorem 5 follows. �

Proof of Theorem 6.

Proof. We decompose an irreducible structure from Tn+2 according to the following cases:

(1) The outermost arc (s1, sn+2) encloses a run of n unpaired positions (no bulge but hairpin-
loop of length n),

(2) the outermost arc (s1, sn+2) encloses at least two irreducible structures with (potentially
empty) unpaired regions before, after and in between (no bulge but a multiloop),

(3) the outermost arc (s1, sn+2) encloses a single irreducible structure IS.

For the third case no bulge (but an interior loop) results if IS has a preceding and succeeding
nonempty run of unpaired positions. Otherwise, i.e. if there is either no preceding or no succeeding
run of unpaired positions, a bulge results (which is marked by variable w). Finally, if both runs
do not exist again no bulge is to be reported. This way, denoting by T1(z, w) = T1 the bivariate
generating function for Tn+2,k, n ≥ 1, k ≥ 0 and c = 1, we arrive at

(
T1

z
)z = b

∑
i≥2

(
1

1− z
)i+1 × T i

1

+
bz

1− z
+ b((

z

1− z
)2 + 2w(

z

1− z
) + 1)× T1

=
b

1− z − T1
− b+ 2b(w − 1)T1

z

1− z
,

which can be simplified as

∂T1(z, w)

z∂z
− T1(z, w)

z2
=

b

1− z − T1(z, w)
− b+ 2b(w − 1)

zT1(z, w)

1− z
.

By the same analysis as for Theorem 1, we have the dominant term in the singular expansion of
T1(z, w) is of type (1− z

α1,b(w) )
1
2 . According to the functional composition for subcritical case, the

singular expansion of S1,b(z, w) is of the same type as eq. (3.9) except for the constants ej(w). By
applying Theorem 2 and 3, we finally obtain the average number of bulges with standard deviation
for c = 1 to be given by

E(B1,1
n ) =

[zn]∂S1(z,w)
∂w

∣∣∣∣
w=1

[zn]S1(z, 1)
=

[zn]S1,w(z, 1)

[zn]S1(z, 1)

= 0.0210n
(
1 + O(n−1)

)
,

E(B1,2
n ) = 0.0261n

(
1 + O(n−1)

)
.

σ(B1,1
n ) = 0.1379

√
n
(
1 + O(n−1)

)
,

σ(B1,2
n ) = 0.1517

√
n
(
1 + O(n−1)

)
.

We continue by considering the case c = 2 where we shall use T2 = T2(z, w) to denote the
generating function for irreducible secondary structures with bulges marked by variable w. Using
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the same decomposition discussed above we find

(z(
T2

z
)z)z = b

∑
i≥2

(
1

1− z
)i+1 × T i

2

+
bz

1− z
+ b((

z

1− z
)2 + 2w(

z

1− z
) + 1)× T2

=
b

1− z − T2
− b+ 2b(w − 1)T2

z

1− z
,

which can be simplified as

∂2T2(z, w)

∂z2
− ∂T2(z, w)

z∂z
+

T2(z, w)

z2
=

b

1− z − T2(z, w)
− b+ 2b(w − 1)

zT2(z, w)

1− z
.

By the same analysis as for Theorem 1, we have the dominant term in the singular expansion of

T2(z, w) is of type (1− z
α2,b(w) )(

α2,b(w)
z log( 1

1− z
α2,b(w)

))
1
2 , from which we have the singular expansion

of S2(z, w) that is the same as eq. (3.15) except the constant a0(w). By applying Theorem 2 and
3, we can derive

E(B2,1
n ) =

[zn]∂S2(z,w)
∂w

∣∣∣∣
w=1

[zn]S2(z, 1)
=

[zn]S2,w(z, 1)

[zn]S2(z, 1)

= 0.0076n
(
1 + O((log n)−1)

)
,

E(B2,2
n ) = 0.0113n

(
1 + O((log n)−1)

)
.

σ(B2,1
n ) = 0.0848

√
n
(
1 + O((logn)−1)

)
,

σ(B2,2
n ) = 0.1024

√
n
(
1 + O((logn)−1)

)
.

Consequently Theorem 6 follows. �

Proof of Theorem 7.

Proof. By using the same decomposition as for the previous proof only changing the way w is
used for marking (now every unpaired position belonging to a bulge instead of just a single one)
we find for T1(z, w) = T1, n ≥ 1, k ≥ 0 and c = 1:

(
T1

z
)z = b

∑
i≥2

(
1

1− z
)i+1 × T i

1

+
bz

1− z
+ b((

z

1− z
)2 + 2

wz

1− wz
+ 1)× T1

=
b

1− z − T1
− b+ 2b(

wz

1− wz
− z

1− z
)× T1,

which can be simplified as

∂T1(z, w)

z∂z
− T1(z, w)

z2
=

b

1− z − T1(z, w)
− b+ 2b(

wz

1− wz
− z

1− z
)× T1(z, w).

By the same analysis as for Theorem 1, we have the dominant term in the singular expansion of
T1(z, w) is of type (1 − z

α1,b(w) )
1
2 . According to the functional composition for subcritical case,

the singular expansion of S1,b(z, w) is of the same type as eq. (3.9) except for the constants ej(w).
By applying Theorem 2 and 3, we finally obtain the average length of a single bulge-loop in the
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(1, b)-polymer-zeta-model with standard deviation is given by

E(L1,1
n )

E(B1,1
n )

=
0.0430

0.0210

(
1 + O(n−1)

)
= 2.0476

(
1 + O(n−1)

)
,

E(L1,2
n )

E(B1,2
n )

=
0.0460

0.0261

(
1 + O(n−1)

)
= 1.7625

(
1 + O(n−1)

)
.

σ(L1,1
n )

E(B1,1
n )

=
0.3516

0.0210
√
n

(
1 + O(n−1)

)
=

16.7348√
n

(
1 + O(n−1)

)
,

σ(L1,2
n )

E(B1,2
n )

=
0.3232

0.0261
√
n

(
1 + O(n−1)

)
=

12.3834√
n

(
1 + O(n−1)

)
.

Similarly for the case c = 2, we have

(z(
T2

z
)z)z =

b

1− z − T2
− b+ 2b(

wz

1− wz
− z

1− z
)× T2,

which can be simplified as

∂2T2(z, w)

∂z2
− ∂T2(z, w)

z∂z
+

T2(z, w)

z2
=

b

1− z − T2(z, w)
− b+ 2b(

wz

1− wz
− z

1− z
)× T2(z, w).

By the same analysis as for Theorem 1, we have the dominant term in the singular expansion of

T2(z, w) is of type (1− z
α2,b(w) )(

α2,b(w)
z log( 1

1− z
α2,b(w)

))
1
2 , from which we have the singular expansion

of S2(z, w) that is the same as eq. (3.15) except the constant a0(w). By applying Theorem 2 and
3, we can derive

E(L2,1
n )

E(B2,1
n )

=
0.0183

0.0076

(
1 + O((log n)−1)

)
= 2.4079

(
1 + O((log n)−1)

)
,

E(L2,2
n )

E(B2,2
n )

=
0.0230

0.0113

(
1 + O((log n)−1)

)
= 2.0354

(
1 + O((log n)−1)

)
.

σ(L2,1
n )

E(B2,1
n )

=
0.2691

0.0076
√
n

(
1 + O((logn)−1)

)
=

35.4115√
n

(
1 + O((log n)−1)

)
,

σ(L2,2
n )

E(B2,2
n )

=
0.2638

0.0113
√
n

(
1 + O((logn)−1)

)
=

23.3449√
n

(
1 + O((log n)−1)

)
.

Consequently Theorem 7 follows. �

Proof of Theorem 8.

Proof. Again we stick to the decomposition of Tn+2 used to prove Theorem 6. There we already
indicated which case will contribute interior loops to a structure. Denoting by T1(z, w) = T1 the

bivariate generating function for Ec,b
# (Tn+2,k), n ≥ 1, k ≥ 0 the number of interior loops and c = 1,

we find

(
T1

z
)z = b

∑
i≥2

(
1

1− z
)i+1 × T i

1

+
bz

1− z
+ b(w(

z

1− z
)2 + 2

z

1− z
+ 1)× T1

=
b

1− z − T1
− b+ b(w − 1)(

z

1− z
)2T1,

which can be simplified as

∂T1(z, w)

z∂z
− T1(z, w)

z2
=

b

1− z − T1(z, w)
− b+ b(w − 1)(

z

1− z
)2T1(z, w).

By the same analysis as for Theorem 1, we have the dominant term in the singular expansion of
T1(z, w) is of type (1 − z

α1,b(w) )
1
2 . According to the functional composition for subcritical case,

the singular expansion of S1,b(z, w) is of the same type as eq. (3.9) except for the constants ej(w).
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By applying Theorem 2 and 3, we finally obtain the average number of interior loops in the
(1, b)-polymer-zeta-model with standard deviation:

E(I1,1n ) = 0.0110n
(
1 + O(n−1)

)
,

E(I1,2n ) = 0.0099n
(
1 + O(n−1)

)
.

σ(I1,1n ) = 0.0996
√
n
(
1 + O(n−1)

)
,

σ(I1,2n ) = 0.0954
√
n
(
1 + O(n−1)

)
.

Similarly for the case c = 2, we have

(z(
T2

z
)z)z =

b

1− z − T2
− b+ b(w − 1)(

z

1− z
)2T2,

which can be simplified as

∂2T2(z, w)

∂z2
− ∂T2(z, w)

z∂z
+

T2(z, w)

z2
=

b

1− z − T2(z, w)
− b+ b(w − 1)(

z

1− z
)2T2(z, w).

By the same analysis as for Theorem 1, we have the dominant term in the singular expansion of

T2(z, w) is of type (1− z
α2,b(w) )(

α2,b(w)
z log( 1

1− z
α2,b(w)

))
1
2 , from which we have the singular expansion

of S2(z, w) that is the same as eq. (3.15) except the constant a0(w). By applying Theorem 2 and
3, we find

E(I2,1n ) = 0.0055n
(
1 + O((log n)−1)

)
,

E(I2,2n ) = 0.0059n
(
1 + O((log n)−1)

)
.

σ(I2,1n ) = 0.0706
√
n
(
1 + O((log n)−1)

)
,

σ(I2,2n ) = 0.0739
√
n
(
1 + O((log n)−1)

)
.

Consequently Theorem 8 follows. �

Proof of Theorem 9.

Proof. It is straightforward to adapt the functional equation for the number of interior loops to
keep track of their total size (by means of variable w). Denoting by T1(z, w) = T1 the corresponding
bivariate generating function, assuming n ≥ 1 and c = 1, we find

(
T1

z
)z = b

∑
i≥2

(
1

1− z
)i+1 × T i

1

+
bz

1− z
+ b((

wz

1− wz
)2 + 2

z

1− z
+ 1)× T1

=
b

1− z − T1
− b+ bT1

[
(

wz

1− wz
)2 − (

z

1− z
)2
]
,

which can be simplified as

∂T1(z, w)

z∂z
− T1(z, w)

z2
=

b

1− z − T1(z, w)
− b+ bT1(z, w)

[
(

wz

1− wz
)2 − (

z

1− z
)2
]
.

By the same analysis as for Theorem 1, we have the dominant term in the singular expansion
of T1(z, w) is of type (1 − z

α1,b(w) )
1
2 . According to the functional composition for subcritical

case, the singular expansion of S1,b(z, w) is of the same type as eq. (3.9) except for the constants
ej(w). By applying Theorem 2 and 3, we finally obtain the average size of an interior loop in the
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(1, b)-polymer-zeta-model with standard deviation:

E(P 1,1
n )

E(I1,1n )
=

0.0466

0.0110

(
1 + O(n−1)

)
= 4.2364

(
1 + O(n−1)

)
,

E(P 1,2
n )

E(I1,2n )
=

0.0358

0.0099

(
1 + O(n−1)

)
= 3.6162

(
1 + O(n−1)

)
.

σ(P 1,1
n )

E(I1,1n )
=

0.4785

0.0110
√
n

(
1 + O(n−1)

)
=

43.5036√
n

(
1 + O(n−1)

)
,

σ(P 1,2
n )

E(I1,2n )
=

0.3834

0.0099
√
n

(
1 + O(n−1)

)
=

38.7243√
n

(
1 + O(n−1)

)
.

Similarly for the case c = 2, we have

(z(
T2

z
)z)z =

b

1− z − T2
− b+ bT2

[
(

wz

1− wz
)2 − (

z

1− z
)2
]
,

which can be simplified as

∂2T2(z, w)

∂z2
− ∂T2(z, w)

z∂z
+

T2(z, w)

z2
=

b

1− z − T2(z, w)
− b+ b(w − 1)(

z

1− z
)2T2(z, w).

By the same analysis as for Theorem 1, we have the dominant term in the singular expansion of

T2(z, w) is of type (1− z
α2,b(w) )(

α2,b(w)
z log( 1

1− z
α2,b(w)

))
1
2 , from which we have the singular expansion

of S2(z, w) that is the same as eq. (3.15) except the constant a0(w). By applying Theorem 2 and
3, we find

E(P 2,1
n )

E(I2,1n )
=

0.0294

0.0055

(
1 + O((logn)−1)

)
= 5.3455

(
1 + O((logn)−1)

)
,

E(P 2,2
n )

E(I2,2n )
=

0.0260

0.0059

(
1 + O((logn)−1)

)
= 4.4068

(
1 + O((logn)−1)

)
.

σ(P 2,1
n )

E(I2,1n )
=

0.4457

0.0055
√
n

(
1 + O((logn)−1)

)
=

81.0401√
n

(
1 + O((log n)−1)

)
,

σ(P 2,2
n )

E(I2,2n )
=

0.3724

0.0059
√
n

(
1 + O((logn)−1)

)
=

63.1238√
n

(
1 + O((log n)−1)

)
.

Consequently Theorem 9 follows. �

Proof of Theorem 10.

Proof. The decomposition of subsection 6 already addressed multiloops; case (2) is the only way a
multiloop may result. It is an easy exercise to derive a functional equation for the bivariate gener-
ating function T1(z, w) = T1 according to that decomposition of Tn+2, marking every occurrence
of a multiloop by variable w. Assuming n ≥ 1 and c = 1, we find

(
T1

z
)z = bw

∑
i≥2

(
1

1− z
)i+1 × T i

1

+
bz

1− z
+ b(

1

1− z
)2 × T1

=
bw

1− z − T1
+ b

z − w

1− z
+ b(1− w)(

1

1− z
)2T1,

which can be simplified as

∂T1(z, w)

z∂z
− T1(z, w)

z2
=

bw

1− z − T1(z, w)
− b+ b

z − w

1− z
+ b(1− w)(

1

1− z
)2T1(z, w).

By the same analysis as for Theorem 1, we have the dominant term in the singular expansion
of T1(z, w) is of type (1 − z

α1,b(w) )
1
2 . According to the functional composition for subcritical

case, the singular expansion of S1,b(z, w) is of the same type as eq. (3.9) except for the constants
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ej(w). By applying Theorem 2 and 3, we finally obtain the average number of multiloops in the
(1, b)-polymer-zeta-model with standard deviation:

E(M1,1
n ) = 0.0330n− 0.4683 + O(n−1),

E(M1,2
n ) = 0.0390n− 0.4618

(
1 + O(n−1)

)
.

σ(M1,1
n ) = 0.1188

√
n
(
1 + O(n−1)

)
,

σ(M1,2
n ) = 0.1277

√
n
(
1 + O(n−1)

)
.

Similarly, we have for the case c = 2

(z(
T2

z
)z)z =

bw

1− z − T2
+ b

z − w

1− z
+ b(1− w)(

1

1− z
)2T2,

which can be simplified as

∂2T2(z, w)

∂z2
− ∂T2(z, w)

z∂z
+

T2(z, w)

z2
=

bw

1− z − T2(z, w)
+ b

z − w

1− z
+ b(1− w)(

1

1− z
)2T2(z, w).

By the same analysis as for Theorem 1, we have the dominant term in the singular expansion of

T2(z, w) is of type (1− z
α2,b(w) )(

α2,b(w)
z log( 1

1− z
α2,b(w)

))
1
2 , from which we have the singular expansion

of S2(z, w) that is the same as eq. (3.15) except the constant a0(w). By applying Theorem 2 and
3, we find

E(M2,1
n ) = 0.0112n+ 0.0024

n

log n
+ O(

n

log2 n
),

E(M2,2
n ) = 0.0220n− 0.0521

n

log n
+ O(

n

log2 n
).

σ(M2,1
n ) = 0.0730

√
n
(
1 + O((log n)−1)

)
,

σ(M2,2
n ) = 0.0872

√
n
(
1 + O((log n)−1)

)
.

Consequently Theorem 10 follows. �

Proof of Theorem 11.

Proof. To analyze the average degree of a multiloop we only need to slightly change the functional
equation of the last proof; if a multiloop is made out of i irreducible structures enclosed by an arc
(which for c = 1 is considered within the functional equation by a term ( 1

1−z )
i+1 ×T i

1) we have to

mark it by wi+1 (instead of w). Accordingly, we find

(
T1

z
)z = b

∑
i≥2

(
w

1− z
)i+1 × T i

1

+
bz

1− z
+ b(

1

1− z
)2 × T1

=
bw

1− z − wT1
+ b

z − w

1− z
+ b(1− w2)(

1

1− z
)2T1,

which can be simplified as

∂T1(z, w)

z∂z
− T1(z, w)

z2
=

bw

1− z − wT1(z, w)
+ b

z − w

1− z
+ b(1− w2)(

1

1− z
)2T1(z, w).

By the same analysis as for Theorem 1, we have the dominant term in the singular expansion
of T1(z, w) is of type (1 − z

α1,b(w) )
1
2 . According to the functional composition for subcritical

case, the singular expansion of S1,b(z, w) is of the same type as eq. (3.9) except for the constants
ej(w). By applying Theorem 2 and 3, we finally obtain the average degree of a multiloop in the
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(1, b)-polymer-zeta-model with standard deviation

E(D1,1
n )

E(M1,1
n )

=
0.1975n− 0.8429

√
n+O(1)

0.0330n− 0.4683 +O(n−1)
= 5.9848

(
1 + O(n− 1

2 )
)
,

E(D1,2
n )

E(M1,2
n )

=
0.2169n− 0.7265

√
n+O(1)

0.0390n− 0.4618 +O(n−1)
= 5.5615

(
1 + O(n− 1

2 )
)
.

σ(D1,1
n )

E(M1,1
n )

=
0.4629

0.0330
√
n

(
1 + O(n− 1

2 )
)
=

14.0273√
n

(
1 + O(n− 1

2 )
)
,

σ(D1,2
n )

E(M1,2
n )

=
0.4917

0.0390
√
n

(
1 + O(n− 1

2 )
)
=

12.6077√
n

(
1 + O(n− 1

2 )
)
.

Similarly for the case c = 2, we have

(z(
T2

z
)z)z =

bw

1− z − wT2
+ b

z − w

1− z
+ b(1− w2)(

1

1− z
)2T2,

which can be simplified as

∂2T2(z, w)

∂z2
− ∂T2(z, w)

z∂z
+

T2(z, w)

z2
=

bw

1− z − wT2(z, w)
+ b

z − w

1− z
+ b(1− w2)(

1

1− z
)2T2(z, w).

By the same analysis as for Theorem 1, we have the dominant term in the singular expansion of

T2(z, w) is of type (1− z
α2,b(w) )(

α2,b(w)
z log( 1

1− z
α2,b(w)

))
1
2 , from which we have the singular expansion

of S2(z, w) that is the same as eq. (3.15) except the constant a0(w). By applying Theorem 2 and
3, we find

E(D2,1
n )

E(M2,1
n )

=
0.1406n− 0.2396 n

logn +O( n
log2 n

)

0.0112n+ 0.0024 n
logn + O( n

log2 n
)
= 12.5536

(
1 + O((log n)−

1
2 )
)
,

E(D2,2
n )

E(M2,2
n )

=
0.1840n− 0.3006 n

logn +O( n
log2 n

)

0.0220n− 0.0521 n
logn + O( n

log2 n
)
= 8.3636

(
1 + O((log n)−

1
2 )
)
.

σ(D2,1
n )

E(M2,1
n )

=
0.2908

0.0112
√
n

(
1 + O((log n)−

1
2 )
)
=

25.9643√
n

(
1 + O((log n)−

1
2 )
)
,

σ(D2,2
n )

E(M2,2
n )

=
0.3590

0.0220
√
n

(
1 + O((log n)−

1
2 )
)
=

16.3182√
n

(
1 + O((log n)−

1
2 )
)
.

Consequently Theorem 11 follows. �

Proof of Theorem 12.

Proof. For c = 1, 2 let Sc(z, w) be the generating function of secondary structures with every
unpaired bases in the exterior loop labeled by variable w. Then Sc(z, w) = 1

1−Tc(z,1)−wz where

Tc(z, 1) represents the generating function of irreducible structures. By differentiating Sc(z, w)
with respect to w and setting w = 1 afterwards, we find Sc,w(z, 1) = zSc(z, 1)

2 for c = 1, 2.
Recalling the singular expansion of S1(z) = S1(z, 1) and S2(z) = S2(z, 1) we arrive at

S1(z) =

(
1− z

α1,b

)− 1
2

∞∑
j=0

ej

(
1− z

α1,b

) j
2

and e0 =
1

α1,b

√
1

2b
̸= 0.

S2(z) =

(
1− z

α2,b

)−1
[
α2,b

z
log(

1

1− z
α2,b

)

]− 1
2

 1

a0
+ O

[
α2,b

z
log(

1

1− z
α2,b

)

]−1
 .
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Now we can derive r-th moment of Ec,b
n , i.e.

E(E1,b
n (E1,b

n − 1) · · · (E1,b
n − r + 1)) =

[zn]∂r
wS1(z, w)|w=1

[zn]S1(z, 1)

= r!(2b)−
r
2
(n− r)

r+1
2 −1

n− 1
2

Γ(12 )

Γ( r+1
2 )

(1 +O(
1

n
))

E(E2,b
n (E2,b

n − 1) · · · (E2,b
n − r + 1)) =

[zn]∂r
wS2(z, w)|w=1

[zn]S2(z, 1)

= r!(2b)−
r
2
(n− r)r

Γ(r + 1)

(log(n− r))−
r+1
2

(log n)−
1
2

(1 +O(
1

logn
)).

Accordingly, we finally obtain for c = 1 the average number of unpaired bases found in the exterior
loop to be asymptotically given by

E(E1,1
n ) =

[zn]∂S1(z,w)
∂w

∣∣∣∣
w=1

[zn]S1(z, 1)
=

[zn]S1,w(z, 1)

[zn]S1(z, 1)

= 1.2066n
1
2

(
1 + O(n− 1

2 )
)
,

E(E1,2
n ) = 0.8668n

1
2

(
1 + O(n− 1

2 )
)
.

We can further calculate the standard deviation σ(E1,b
n ) = r′1,b n

1
2

(
1 + O(n− 1

2 )
)
where (r′1,1, r

′
1,2) ≈

(0.6842, 0.5254). For c = 2 we get

E(E2,1
n ) =

[zn]∂S2(z,w)
∂w

∣∣∣∣
w=1

[zn]S2(z, 1)
=

[zn]S2,w(z, 1)

[zn]S2(z, 1)

= 0.7978n(log n)−
1
2

(
1 + O((log n)−1)

)
,

E(E2,2
n ) = 0.5974n(log n)−

1
2

(
1 + O((log n)−1)

)
.

The standard deviation is σ(E2,b
n ) = r′2,bn(log n)

− 1
2

(
1 + O((log n)−1)

)
where (r′1,1, r

′
1,2) ≈ (0.2411, 0.2000).

�

Proof of Theorem 13.

Proof. For c = 1, 2 let Sc(z, w) be the generating function of secondary structures with every
irreducible structure in the exterior loop labeled by variable w. Then Sc(z, w) = 1

1−wTc(z,1)−z

where Tc(z, 1) represents the generating function of irreducible structures. We can derive the r-th
moment of P c,b

n , i.e.,

E(P 1,b
n (P 1,b

n − 1) · · · (P 1,b
n − r + 1)) =

[zn]∂r
wS1(z, w)|w=1

[zn]S1(z, 1)

= r!(2b)−
r
2 (

1

α1,b
− 1)rn

r
2

Γ(12 )

Γ( r+1
2 )

(1 +O(
1

n
))

E(P 2,b
n (P 2,b

n − 1) · · · (P 2,b
n − r + 1)) =

[zn]∂r
wS2(z, w)|w=1

[zn]S2(z, 1)

= r!(2b)−
r
2 (

1

α1,b
− 1)r

nr

Γ(r + 1)
(log n)−

r
2 .
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Accordingly, we finally obtain for c = 1 the average degree of exterior loop to be asymptotically
given by

E(P 1,1
n ) =

[zn]∂S1(z,w)
∂w

∣∣∣∣
w=1

[zn]S1(z, 1)
=

[zn]S1,w(z, 1)

[zn]S1(z, 1)

= 0.8426n
1
2

(
1 + O(n− 1

2 )
)
,

E(P 1,2
n ) = 0.6332n

1
2

(
1 + O(n− 1

2 )
)
.

We can further calculate the standard deviation σ(P 1,b
n ) = p′1,b n

1
2

(
1 + O(n− 1

2 )
)
where (p′1,1, p

′
1,2) ≈

(0.4404, 0.3310). For c = 2 we get

E(P 2,1
n ) =

[zn]∂S2(z,w)
∂w

∣∣∣∣
w=1

[zn]S2(z, 1)
=

[zn]S2,w(z, 1)

[zn]S2(z, 1)

= 0.2171n(log n)−
1
2

(
1 + O((log n)−1)

)
,

E(P 2,2
n ) = 0.2345n(log n)−

1
2

(
1 + O((log n)−1)

)
.

The standard deviation is σ(P 2,b
n ) = p′2,bn

1
2 (log n)−

1
4

(
1 + O((log n)−1)

)
where (p′2,1, p

′
2,2) ≈ (0.4659, 0.4842).

�


