
A

Maximum Likelihood Analysis of the Ford-Fulkerson Method on
Special Graphs

ULRICH LAUBE and MARKUS E. NEBEL, Technische Universität Kaiserslautern

We present original average-case results on the performance of the Ford-Fulkerson maxflow algorithm on
grid graphs (sparse) and random geometric graphs (dense). The analysis technique combines experiments
with probability generating functions, stochastic context free grammars and an application of the maxi-
mum likelihood principle enabling us to make statements about the performance, where a purely theoretical
approach has little chance of success. The methods lends itself to automation allowing us to study more vari-
ations of the Ford-Fulkerson maxflow algorithm with different graph search strategies and several elementary
operations.

A simple depth-first search enhanced with random iterators provides the best performance on grid graphs.
For random geometric graphs a simple priority-first search with a maximum-capacity heuristic provides the
best performance. Notable is the observation that randomization improves the performance even when the
inputs are created from a random process.

General Terms: Algorithms, Performance, Experimentation

Additional Key Words and Phrases: Analysis of algorithms, average case, generating functions, Ford-Fulkerson
maxflow, maximum likelihood analysis, random geometric graphs, stochastic context free grammars

Reference Format:
Laube, U., Nebel, M. E. 2013. Maximum Likelihood Analysis of the Ford-Fulkerson Method on Special Graphs.

1. INTRODUCTION
Predicting the performance and making decisions about implementation details based
on worst-case bounds is a tricky business. Often there is a large gap between the
worst-case bound and the actual performance of the algorithm. Thus the worst-case
bounds are of limited use for a practitioner.

The network-flow problem is of interest not only because numerous efficient algo-
rithms for solving this problem have been devised, but also many reductions to it allow
a whole range of distribution, matching and cut problems to be solved as well.

In case of the Ford-Fulkerson method the known worst-case results are products
of conservative upper bounds for the number of augmenting paths and the work per
path. For example on a grid graph with 400 vertices, 760 edges and an edge capacity
limit of 100 the bound for the number of augmenting path is as high as 40 000 while
we actually observe only around 35 augmenting paths with breadth-first-search (bfs)
in experiments. For priority-first-search (pfs) the bound is 7 000 but we only observe
around 5 paths on average. Predicting the performance and making decisions about
implementation details based on the bounds is futile.

An alternative would be an average-case analysis, but even for an algorithm of
moderate complexity as the augmenting path method, this is a difficult task. Despite
being one of the better understood combinatorial optimizations problems the work
on the algorithms for computing a maximum flow has mainly concentrated on giving
increasingly better worst-case bounds, as summarized in [Goldberg and Rao 1998].
Experimental work on the algorithms for computing the maximum flow has an equally
long history, see [Goldfab and Grigoriads 1988] for blocking flows or [Chandran and
Hochbaum 2009] for the push-relabel method.

This work is supported by DFG grants NE 1379/2-1 and NE 1379/3-1.
Author’s address: Fachbereich Informatik, Technische Universität Kaiserslautern, Gottlieb-Daimler-Straße,
67663 Kaiserslautern, Germany. Email: {laube, nebel}@informatik.uni-kl.de. Tel.: +49 631 205 2509. Fax: +49
631 205 2573.

A:2 U. Laube and M. Nebel

We will use a hybrid approach, first presented by the authors in [Laube and Nebel
2010], to obtain original average-case results. The maximum likelihood analysis involves
a formal model of the algorithms behavior derived from the specification of the algorithm,
that is subsequently trained using simulation runs on sample inputs. One advantage
is that the method lends itself to automation allowing us to study more variations
of the algorithm and different sample inputs set. Another advantage is that we can
use independent results to crosscheck the derived model and gain confidence that it
describes the algorithms behavior adequately. Furthermore the method not just counts
the overall number an elementary operation is executed, it provides cost contributions
of the different parts of an algorithm not just confirming that one algorithms invokes
less elementary operation than another but also hinting why. Last but not least, aiming
at the average-case performance of an algorithm allows the consideration of randomized
variants of an algorithm in a homogeneous way.

This method has been implemented in our tool MaLiJAn1 which already has success-
fully been used to investigate the new Java 7’s dual pivot quicksort, see [Wild et al.
].

The results are not only useful for practitioners as they may guide a theoretician in
a common average-case analysis by perhaps ruling out certain cases or giving hints
which part of the algorithm influences a certain performance parameter.

We selected two graph types: grid graphs and random geometric graphs. The reason
for looking into grid graphs is that they have a rich enough structure that allows to
proof at least some results about the properties of the algorithms working on them.
They are easily scalable, similar graphs may be found in practice (e.g. a pixel grid in
computer graphics) and they are yet sufficiently challenging to be interesting.

The order of the neighbors in an adjacency list representation is a degree of freedom
that might be exploited to speed up an algorithm. Due to their regular structure grid
graphs provide a nice setup to study this effect.

The reason for looking into random geometric graphs is that the triangle property
is often more realistic (e.g. brain cells connected to nearby ones as are communication
facilities that are distributed across an area) than the independence of the edges as in
the Erdös-Rényi model.

Note that the algorithms we are investigating work on all graphs and they do not use
any special property of grid graphs or random geometric graphs to compute the result
faster on those graphs.

The main questions addressed here are a comparison of the well known graph search
strategies, depth-first search (dfs), breath-first search (bfs) and priority-first search
(pfs) in the Ford-Fulkerson method for determining a maxflow. We are also looking into
the typically strong dependence of a graph algorithm’s performance on the order of the
vertecies’ adjacency lists by studying the effect that the use of random iterators in the
graph search strategies have. They basically turn a graph algorithm into a randomized
algorithm (denoted dfsrnd and bfsrnd in the remainder of this paper).

2. RESULTS
The following results were derived semi-automatically with the maximum likelihood
analysis method as described in [Laube and Nebel 2010]. An overview of this analysis
method is found in Appendix A.6. The models of the behavior of the Ford-Fulkerson
algorithm on the different grids graphs are defined in Section 4 and Section 5. They are
denoted by 𝑀 𝑙

𝑑 where 𝑑 ∈ {unit,unif, gauss} is one of the edge weight distributions and
𝑙 ∈ {llur, lmum} describes the locations of the source and sink.

1The tool can be downloaded at http://wwwagak.cs.uni-kl.de/malijan.html

http://wwwagak.cs.uni-kl.de/malijan.html

Maximum Likelihood Analysis of the Ford-Fulkerson Method on Special Graphs A:3

Table I. Leading terms of the average number of augmenting paths.

model dfs bfs pfs dfsrnd bfsrnd

gr
id

𝑀 llur
unit 2 2 2 2 2

𝑀 lmum
unit 3 3 3 3 3

𝑀 llur
unif 66.57 0.81 log2(𝑛) 3.53 66.1 0.78 log2(𝑛)

𝑀 lmum
unif 101.32 0.97 log2(𝑛) 5.27 111.4 0.97 log2(𝑛)

𝑀 llur
gauss 3.11

√
𝑛 4.00 log(𝑛) 3.24 26.0 log(𝑛) 0.80 log(𝑛)

𝑀 lmum
gauss 0.27

√
𝑛 2.61 log(𝑛) 4.90 48.9 log(𝑛) 2.65 log(𝑛)

rn
d.

ge
om

.

𝑀 llur
unit 0.016𝑛 0.017𝑛 0.016𝑛 0.016𝑛 0.017𝑛

𝑀 lmum
unit 0.034𝑛 0.034𝑛 0.034𝑛 0.034𝑛 0.034𝑛

𝑀 llur
unif 0.283𝑛 0.123𝑛 0.019𝑛 0.209𝑛 0.110𝑛

𝑀 lmum
unif 0.563𝑛 0.202𝑛 0.039𝑛 0.373𝑛 0.183𝑛

𝑀 llur
gauss 0.300𝑛 0.096𝑛 0.019𝑛 0.239𝑛 0.064𝑛

𝑀 lmum
gauss 0.595𝑛 0.166𝑛 0.039𝑛 0.434𝑛 0.114𝑛

Table II. Average number of elementary operations on the queue in bfs and bfsrnd.

bfs bfsrnd
total per path total per path

model put get put get put get put get

gr
id

𝑀 llur
unit 2𝑛 2𝑛 1.00 1.00 2.00𝑛 2.00𝑛 1.00 1.00

𝑀 lmum
unit 2.35𝑛 2.31𝑛 0.78 0.77 2.35𝑛 2.31𝑛 0.78 0.77

𝑀 llur
unif 0.74𝑛 log2 𝑛 0.74𝑛 log2 𝑛 0.91 0.91 0.72𝑛 log2 𝑛 0.72𝑛 log2 𝑛 0.92 0.92

𝑀 lmum
unif 0.79𝑛 log2 𝑛 0.78𝑛 log2 𝑛 0.81 0.80 0.79𝑛 log2 𝑛 0.78𝑛 log2 𝑛 0.81 0.80

𝑀 llur
gauss 3.03𝑛 log(𝑛) 3.03𝑛 log(𝑛) 0.76 0.76 9.93𝑛 9.94𝑛 𝒪

(︀
1/ log(𝑛)

)︀
𝑀 lmum

gauss 2.11𝑛 log(𝑛) 2.07𝑛 log(𝑛) 0.81 0.80 2.20𝑛 1.99𝑛

rn
d.

ge
om

.

𝑀 llur
unit 0.0161𝑛2 0.0163𝑛2 0.98 0.97 0.0160𝑛2 0.0162𝑛2 0.96 0.97

𝑀 lmum
unit 0.0333𝑛2 0.0330𝑛2 0.99 0.98 0.0333𝑛2 0.0329𝑛2 0.99 0.98

𝑀 llur
unif 0.1197𝑛2 0.1190𝑛2 0.99 0.98 0.1090𝑛2 0.1084𝑛2 0.99 0.98

𝑀 lmum
unif 0.2000𝑛2 0.1982𝑛2 0.99 0.98 0.1823𝑛2 0.1802𝑛2 1.00 0.98

𝑀 llur
gauss 0.0943𝑛2 0.0940𝑛2 0.98 0.98 0.0630𝑛2 0.0626𝑛2 0.99 0.99

𝑀 lmum
gauss 0.1641𝑛2 0.1630𝑛2 0.99 0.98 0.1140𝑛2 0.1132𝑛2 0.99 1.00

Table I shows the average number of augmenting paths necessary to compute a
maxflow with the Ford-Fulkerson method, using one of the five graph search strategies
(dfs, bfs, pfs, dfsrnd, bfsrnd) in the models 𝑀 𝑙

𝑑 where 𝑑 ∈ {unit,unif, gauss} and
𝑙 ∈ {llur, lmum}.

The main operations on queues used in bfs and bfsrnd are put and get. The averages
for the different models 𝑀 𝑙

𝑑 are shown in Table II.
When dfs and dfsrnd are used as graph search strategies we investigate the average

number of elementary operations on the stacks (push/pop). Table III lists the results
when computing a maxflow with the Ford-Fulkerson method using the dfs and dfsrnd
graph search strategies in the models 𝑀 𝑙

𝑑.
Tables II–IV include columns that list the average number of operations divided

by the number of paths times the number of vertecies 𝑛, thus indicating the average
fraction of all vertecies of the graph that were stored in the queue or stack per path.

When the pfs graph search strategy is used the elementary operations on the pri-
ority queue are getmin/lower; their average counts under the models 𝑀 𝑙

𝑑 are given in
Table IV.

Thus far we have looked at the fraction of vertecies involved in the different operations.
It is also instructive to look at the average fraction of edges that were visited during
the graph search. We consider an edge visited if both its vertecies are removed from
the stack or queue. Thus divding the number of pops, gets and getmins by the number

A:4 U. Laube and M. Nebel

Table III. Average number of elementary operations on the stack in dfs and dfsrnd.

dfs dfsrnd
total per path total per path

model push pop push pop push pop push pop
gr

id

𝑀 llur
unit 2.00𝑛 1.03𝑛 1.00 0.52 1.40𝑛 1.01𝑛 0.70 0.51

𝑀 lmum
unit 0.86𝑛 0.76𝑛 0.29 0.25 2.05𝑛 1.51𝑛 0.68 0.50

𝑀 llur
unif 66.70𝑛 39.79𝑛 1.00 0.60 40.56𝑛 29.53𝑛 0.61 0.45

𝑀 lmum
unif 83.28𝑛 57.00𝑛 0.82 0.56 64.82𝑛 47.25𝑛 0.58 0.42

𝑀 llur
gauss 2.82𝑛3/2 1.83𝑛3/2 0.91 0.59 102.81𝑛 72.64𝑛 𝒪

(︀
1/ log(𝑛)

)︀
𝑀 lmum

gauss odd-even effect as discussed in Sec. 9 204.24𝑛 145.44𝑛

ra
nd

.g
eo

m
.

𝑀 llur
unit 0.016𝑛2 0.004𝑛2 1.00 0.27 0.015𝑛2 0.004𝑛2 0.86 0.27

𝑀 lmum
unit 0.032𝑛2 0.011𝑛2 0.94 0.34 0.031𝑛2 0.012𝑛2 0.93 0.36

𝑀 llur
unif 0.273𝑛2 0.063𝑛2 0.97 0.22 0.180𝑛2 0.052𝑛2 0.86 0.25

𝑀 lmum
unif 0.577𝑛2 0.161𝑛2 1.02 0.29 0.340𝑛2 0.134𝑛2 0.91 0.36

𝑀 llur
gauss 0.293𝑛2 0.067𝑛2 0.98 0.23 0.206𝑛2 0.060𝑛2 0.86 0.25

𝑀 lmum
gauss 0.468𝑛2 0.172𝑛2 0.79 0.29 0.395𝑛2 0.015𝑛2 0.91 0.36

Table IV. Average number of elementary operations on the priority
queue in pfs.

pfs total per path
model getmin lower getmin lower

gr
id

𝑀 llur
unit 1.78𝑛 1.90𝑛 0.89 0.95

𝑀 lmum
unit 2.63𝑛 2.87𝑛 0.88 0.96

𝑀 llur
unif 3.84𝑛 6.45𝑛 1.09 1.83

𝑀 lmum
unif 5.29𝑛 9.00𝑛 1.00 1.71

𝑀 llur
gauss 3.55𝑛 5.96𝑛 1.10 1.84

𝑀 lmum
gauss 4.96𝑛 8.41𝑛 1.01 1.72

ra
nd

.g
eo

m
.

𝑀 llur
unit 0.0092𝑛2 0.0195𝑛2 0.56 1.19

𝑀 lmum
unit 0.0189𝑛2 0.0300𝑛2 0.56 0.90

𝑀 llur
unif 0.0190𝑛2 0.0782𝑛2 0.99 4.10

𝑀 lmum
unif 0.0386𝑛2 0.1907𝑛2 0.99 4.89

𝑀 llur
gauss 0.0187𝑛2 0.0843𝑛2 1.00 4.49

𝑀 lmum
gauss 0.0382𝑛2 0.2058𝑛2 0.99 5.33

Table V. Average fraction of edges visited during the different graph search
strategies. The entry (*) is omitted due to the odd-even effect as discussed
in Section 9.

model dfs bfs pfs dfsrnd bfsrnd

grid

𝑀 llur
unit 0.26 0.50 0.45 0.25 0.50

𝑀 lmum
unit 0.13 0.39 0.44 0.25 0.39

𝑀 llur
unif 0.30 0.47 0.53 0.22 0.46

𝑀 lmum
unif 0.28 0.40 0.50 0.21 0.40

𝑀 llur
gauss 0.45 0.38 0.54 𝒪

(︀
1/ log(𝑛)

)︀
𝑀 lmum

gauss (*) 0.40 0.51

rand. geom. 𝑀⋆
⋆ 𝒪

(︀
1/𝑛

)︀
𝒪
(︀
1/𝑛

)︀
of paths times the number of edges (2(𝑛−

√
𝑛) for grid graphs and 0.031𝑛2 for random

geometric graphs (see Corollary 5.3), we can determine the average fraction of edges
visited per path as shown in Table V for grid graphs. In case of random geometric
graphs we determined that in all the models and graph search strategy combinations
the average fraction of edges visited per path is in 𝒪(1/𝑛).

Maximum Likelihood Analysis of the Ford-Fulkerson Method on Special Graphs A:5

These results not only allow us to select the fastest graph strategies for the input
families considered here: A simple depth-first search enhanced with random iterators
provides the best performance on grid graphs. And a simple priority-first search with
a maximum-capacity heuristic provides the best performance for random geometric
graphs.

One of the insights that goes beyond a mere performance characteristic is that it is
beneficial to break any regularities in the order that the adjacency lists are build up.
And even if the inputs are created from a random process it is a notable observation
that randomization still improves the performance.

In the following sections we will present the details on the network-flow problem, the
Ford-Fulkerson-Method, the input models and discuss the results. An introduction to
the maximum likelihood analysis method is provided in the appendix.

3. NETWORK FLOW
Following [Sedgewick 2003] a network is just a weighted digraph where the edge
weights are called capacities. The network flow-problem asks for a second set of edge
weights, called the flow, that has to satisfy certain constraints. The flow may not exceed
the capacities and the total flow in and out of a vertex is 0 with the exception of two
designated vertecies the source and the sink. Including an imaginary extra edge that
connects source and sink, this flow conservation property holds for all vertecies and
the flow on this extra edge is the value of the flow. We specifically address the maxflow-
problem (we are asked to determine a flow that is maximal amongst all feasible flows)
and investigate one approach for solving it, the Ford-Fulkerson method or augmenting-
path method introduced in [Ford and Fulkerson 1962].

We selected the Ford-Fulkerson method for a number of reasons. While there are
average-case results for other maxflow algorithms, e.g. [Motwani 1994], where results
about Dinic’s algorithm [Dinic 1970] on random bipartite graphs are given, to the best of
our knowledge, we are not aware of average-case results for the classical Ford-Fulkerson
method. Also the Ford-Fulkerson method is conceptually simpler than push-relabel,
blocking-flow, pseudoflow and Orlin’s [Orlin 2013] approach allowing us to verify the
results and gain more confidence in the new analysis method.

3.1. Ford-Fulkerson Method
The Ford-Fulkerson method is a rather generic approach, as it does not include a specific
rule for finding the augmenting paths. A subroutine augment(s, t) is required that
finds a non-saturated path (a path whose edges have not reached their capacity limit)
during a graph search phase and then saturates the path by pushing a fraction of the
flow along that augmenting path.

Various recommendations have been given in the literature such as breadth-first or a
greedy maximum-capacity search for finding an augmenting path. We selected three
implementations from [Sedgewick 2003] included in the appendix: The general priority-
first search pfs uses a multiway-heap to implement a priority queue. Choosing the
priority to be the remaining capacity of the edges and taking the edge with the largest
amount leads to the maximum-capacity-augmenting-path variant from [Edmonds and
Karp 1972]. Other choices for the priority could be used to simulate a stack or a simple
queue, however this would incur an additional factor of 𝒪

(︀
log(|𝑉 |)

)︀
on the priority

queue’s operations compared to a direct implementation. Therefore the implementations
dfs and bfs use a stack and a simple queue directly. Using bfs yields the shortest-
augmenting-path heuristic of Edmonds and Karp from [Edmonds and Karp 1972].

Randomized versions of the Ford-Fulkerson method can be devised by using a ran-
domized queue or by randomizing the access to the adjacency lists. This could be done
once, when the graph is read into memory for the first time, or upon every access

A:6 U. Laube and M. Nebel

to the adjacency lists. We use the implementation from [Sedgewick 2003] and add a
random iterator which is easily possible. This random iterator is just an adaption of the
Durstenfeld variant of the Fisher-Yates-Shuffle [Durstenfeld 1964; Knuth 1998] for the
adjacency lists. This adds of course an expensive call to a random number generator to
the iterator.

The choice for a Java implementation was made as the tool MaLiJAn from [Laube and
Nebel 2010] is capable of performing a maximum likelihood analysis semi-automatically
on Java bytecode. It works on annotated sources as shown below:

while(pfs()) { // bfs dfs bfsrnd dfsrnd
produceCost("Path", 1);
augment(s, t);

}

This code fragment shows the main loop of the Ford-Fulkerson method. The annotation
“produceCost("Path", 1)” indicates, that the performance parameter denoted “Path” is
associated with this position in the source code. It allows us to keep track of the number
of augmenting paths used while calculating the maxflow. All the elementary operations
listed in Section 2 were annotated similarly.

The running time depends on the number of augmenting paths needed to find a
maxflow and the time needed to find each augmenting path. The results for the worst-
case from [Sedgewick 2003] are:

THEOREM 3.1. The number of augmenting paths is at most |𝑉 | ·𝑀 for any implemen-
tation of the Ford-Fulkerson method, it is at most |𝑉 | · |𝐸| for shortest-augmenting-path
heuristic of the Ford-Fulkerson method and at most 2|𝐸| log(𝑀) for maximum-capacity-
augmenting-path heuristic of the Ford-Fulkerson method. The largest edge weight is
denoted by 𝑀 .

To illustrate the gap between theses bounds and the actual performance of the im-
plementation from [Sedgewick 2003]. We note that on a grid graph with |𝑉 | = 400,
|𝐸| = 760 and 𝑀 = 100 the bound for the number of augmenting path is as high as
40 000 while we actually observe only around 35 augmenting paths with bfs. For pfs the
bound is 7 000 but we only observe around 5 paths on average. As we call graphs sparse
when |𝐸| = 𝒪

(︀
|𝑉 |
)︀

holds and dense when |𝐸| = Θ
(︀
|𝑉 |2

)︀
holds we have the following

corollary.

COROLLARY 3.2. Assuming that an augmenting path can be found in 𝒪
(︀
|𝐸|
)︀

the
time to find a maxflow is 𝒪

(︀
|𝐸| · |𝑉 |𝑀

)︀
which is 𝒪

(︀
|𝑉 |2𝑀

)︀
for sparse networks. In case

of the shortest-augmenting-path heuristic the bounds is 𝒪
(︀
|𝐸| · |𝑉 ||𝐸|

)︀
which is 𝒪

(︀
|𝑉 |3

)︀
for sparse networks. Note that the general bound is sharper for small 𝑀 and sparse
networks. For the maximum-capacity-augmenting-path heuristic we have the bound
𝒪
(︀
|𝐸| log(|𝑉 |) · 2|𝐸| log(𝑀)

)︀
which is 𝒪

(︀
|𝑉 |2 log(|𝑉 |) log(𝑀)

)︀
for sparse networks.

As explained in section A.6.3 the maximum likelihood training runs the analyzed
algorithm on sufficient large sets of inputs. In a common analysis a uniform distribution
of all inputs is assumed for the derivation of an average-case result. With graphs it is a
priori not clear how the uniformity assumption should be incorporated. There are at
least two choices: Gilbert’s [Gilbert 1959] random graph model 𝐺𝑛,𝑝 picks each edge
independently with probability 𝑝 or the random graph model of Erdős and Rényi 𝐺𝑛,𝑚

were all graphs with 𝑚 edges equally probable [Erdos and Rényi 1959].
The maximum likelihood analysis method does not make or need an assumption

about the distribution of the inputs. Whether given a sample of real world inputs or
a set of generated inputs it allows to derive an average case result for this particular

Maximum Likelihood Analysis of the Ford-Fulkerson Method on Special Graphs A:7

family of inputs. In this sense the maximum likelihood analysis method supports an
average-case analysis for non-uniform distributions of the inputs. Moreover we are
not required to specific the possibly unknown distribution in mathematical terms. The
maximum likelihood training captures the distribution in the trace grammar implicitly.

4. GRID GRAPHS
We now define the square grid graphs and the distributions of the weights on the edges
that we use in our experiments for the maximum likelihood training thereby creating
models of the behavior of the Ford-Fulkerson method. Formally we have:

Definition 4.1. A square grid graph 𝐺𝑘 = (𝑉,𝐸) is a graph on 𝑉 = {0, . . . , 𝑘 − 1}2
with the set of edges 𝐸 =

{︀
{(𝑖, 𝑗), (𝑖′, 𝑗′)} | |𝑖− 𝑖′| + |𝑗 − 𝑗′| = 1

}︀
.

If 𝐺 = (𝑊,𝐹) denotes a graph on 𝑊 , we write 𝑉 (𝐺) = 𝑊 for its set of vertices and
𝐸(𝐺) = 𝐹 for its set of edges. Following [Vizing 1963] we have the following definition:

Definition 4.2. We denote the cartesian product of the graphs 𝐺 and 𝐻 by 𝐺 � 𝐻
and define the resulting graph on the vertex set 𝑉 (𝐺) × 𝑉 (𝐻), the cartesian product of
the vertex sets 𝑉 (𝐺) and 𝑉 (𝐻). Two vertices (𝑢, 𝑢′), (𝑣, 𝑣′) ∈ 𝑉 (𝐺 � 𝐻) are adjacent if
and only if

(1) 𝑢 = 𝑣 and 𝑢′ is adjacent to 𝑣′ in 𝐻, or
(2) 𝑢′ = 𝑣′ and 𝑢 is adjacent to 𝑣 in 𝐺.

The box symbol of this operation resembles its effect on two path graphs.

Definition 4.3. A path graph 𝑃𝑖 is a tree without branches on 𝑖 vertices.

Definition 4.4. A two-dimensional grid graph 𝐺𝑗,𝑘 is defined as 𝐺𝑗,𝑘 := 𝑃𝑗 � 𝑃𝑘. It is
called square if 𝑗 = 𝑘.

By defining the two path graphs 𝑃𝑗 and 𝑃𝑘 on the vertex sets [1..𝑗] and [1..𝑘]2 respectively,
the pairs in 𝑉 (𝑃𝑗 � 𝑃𝑘) can serve as coordinates for the vertices they represent, yielding
a grid-like embedding in the plane.

LEMMA 4.5. The grid graph 𝐺𝑗,𝑘 has the following properties:

|𝑉 (𝐺𝑗,𝑘)| = 𝑗 · 𝑘, |𝐸(𝐺𝑗,𝑘)| = (𝑗 − 1)𝑘 + 𝑗(𝑘 − 1) = 2𝑗 · 𝑘 − 𝑗 − 𝑘,

there are 4 vertices of degree 2, 2𝑘 + 2𝑗 − 8 vertices of degree 3 and (𝑘 − 2)(𝑗 − 2) vertices
of degree 4.

The Proof is not difficult and found in the appendix. As 2 · |𝐸(𝐺𝑗,𝑘)| is just the total
degree sum of the graph, the average or expected degree of a vertex 𝑣 ∈ 𝑉 (𝐺𝑗,𝑘) is

E
[︀
deg(𝑣)

]︀
=

2 · |𝐸(𝐺𝑗,𝑘)|
|𝑉 (𝐺𝑗,𝑘)|

=
4𝑗 · 𝑘 − 2𝑗 − 2𝑘

𝑗 · 𝑘
= 4 − 2

(︂
1

𝑗
+

1

𝑘

)︂
.

COROLLARY 4.6. The square grid graph 𝐺𝑘 has the following properties:

|𝑉 (𝐺𝑘)| = 𝑘2, |𝐸(𝐺𝑘)| = 2𝑘2 − 2𝑘,

there are 4 vertices of degree 2, 4𝑘− 8 vertices of degree 3 and (𝑘− 2)2 vertices of degree 4
and the average or expected degree of some vertex 𝑣 ∈ 𝑉 (𝐺𝑘) is E

[︀
𝑑𝑒𝑔(𝑣)

]︀
= 4(1 − 1/𝑘).

With 𝑘 being the “side-length” of the square grid graph 𝐺𝑘, we let |𝑉 (𝐺𝑘)| = 𝑘2 = 𝑛 in
Corollary 4.6, thus |𝐸(𝐺√

𝑛)| = 2𝑛− 2
√
𝑛, hence square grid graphs are sparse.

2[𝑎..𝑏] with 𝑎, 𝑏 ∈ N and 𝑎 ≤ 𝑏 is the integer interval, thus [𝑎..𝑏] := {𝑎, 𝑎+ 1, . . . , 𝑏}

A:8 U. Laube and M. Nebel

5. RANDOM GEOMETRIC GRAPHS
We now define the random geometric graphs and the distributions of the weights on the
edges that we use in the maximum likelihood training thereby creating models of the
behavior of the Ford-Fulkerson method. Following [Penrose 2003] we define:

Definition 5.1. A geometric graph 𝐺𝑟(𝒳) = (𝒳 , 𝐸) is a undirected graph on 𝒳 ⊆ R𝑑

with the set of edges 𝐸 =
{︀
{𝑥, 𝑥′} | ‖𝑥− 𝑥′‖ ≤ 𝑟

}︀
. Where ‖·‖ is a norm on R𝑑 and 𝑟 an

additional parameter.

For particular choices of 𝑑 the graphs have special names, e.g. 𝑑 = 1 interval graphs,
𝑑 = 2 disk graphs or proximity graphs. We restrict ourselves to the case where 𝑑 = 2
and we use the Euclidean norm on R2. We are not interested in graphs on a specific
point set 𝒳 , we rather use a probabilistic model. Let 𝑓 be some specified probabilistic
density function on R2 and let 𝑋1, 𝑋2, . . . denote independent and identically distributed
2-dimensional random variables with common density 𝑓 . Let 𝒳𝑛 = {𝑋1, 𝑋2, . . . , 𝑋𝑛}. We
then call 𝐺𝑟(𝒳𝑛) a random geometric graph. Again we restrict ourselves to a uniform
distribution on [0, 1]2.

If 𝐺 = (𝑊,𝐹) denotes a graph on 𝑊 , we write 𝑉 (𝐺) = 𝑊 for its set of vertices and
𝐸(𝐺) = 𝐹 for its set of edges.

THEOREM 5.2. The average degree of an arbitrary node in a random geometric graph
𝑣 ∈ 𝑉

(︀
𝐺𝑟(𝒳𝑛)

)︀
on point set 𝒳𝑛 uniformly distributed over the unit square is:

E
[︀
deg(𝑣)

]︀
= 𝑛 · 𝑝(𝑟) with 𝑝(𝑟) = 𝑟2

(︂
𝜋 +

𝑟(3𝑟 − 16)

6

)︂
.

The proof is long but not difficult. We just have to integrate the different contributions
over the unit square to get the average size of the neighborhood 𝑝(𝑟). The proof is
included in the appendix.

COROLLARY 5.3. The expected number of edges in a random geometric graph 𝐺𝑟(𝒳𝑛)
is

E
[︀⃒⃒
𝐸
(︀
𝐺𝑟(𝒳𝑛)

)︀⃒⃒]︀
=

𝑛

2
· E
[︀
deg(𝑣)

]︀
=

𝑛2𝑝(𝑟)

2
=

𝑛2𝑟2

2

(︂
𝜋 +

𝑟(3𝑟 − 16)

6

)︂
.

As there are at most
(︀
𝑛
2

)︀
= 𝑛(𝑛−1)

2 edges in a graph comparing this to the expected
number of edges

lim
𝑛→∞

𝑛2𝑝(𝑟)
2

𝑛(𝑛−1)
2

= lim
𝑛→∞

𝑝(𝑟)𝑛

𝑛− 1
= lim

𝑛→∞
𝑝(𝑟)

1

1 − 1
𝑛

= 𝑝(𝑟)

shows that asymptotically a fraction 𝑝(𝑟) of all possible edges are present. It is clear
from the above, that random geometric graphs are dense.

6. SAMPLE INPUTS FOR EXPERIMENTS
For the sample inputs sets of square grid graphs 𝐺𝑘 with “side-lengths” 𝑘 ∈
{5, 10, 15, . . . , 50, 51, 52, . . . , 60} are used. We call the four possible directions of traversal
in the grid graph as north, east, west and south. Our graph generator ensures that the
edges are always inserted into adjacency lists in the same order, which is east, west,
north, south for no special reason.

Numbering the vertecies in row-major order starting with 0 in the lower left corner
of the grid two locations for the source 𝑠 and the sink 𝑡 were considered:

(1) (llur) the lower left 𝑠 = 0 and the upper right corner 𝑡 = 𝑘2 − 1,

Maximum Likelihood Analysis of the Ford-Fulkerson Method on Special Graphs A:9

Fig. 1. Two random geometric graphs draw in the unit square. On the left with |𝑉 | = 200 vertices and
|𝑉 | = 1000 vertices on the right. The shaded disks (green) with radius 𝑟 = 15/100 represent the neighborhood
of the vertices.

(2) (lmum) the lower middle 𝑠 = ⌊𝑘
2 ⌋ and the upper middle vertex 𝑡 = 𝑘2 − 1 − ⌊𝑘

2 ⌋.
When 𝑘 is even there is of course no vertex in the middle. Note that with 𝑘 = 2𝑖 the
source 𝑠 is in column 𝑖 and the sink 𝑡 is in column 4𝑖2 − 1 − 𝑖 mod 2𝑖 = 𝑖− 1.

In case of the random geometric graphs 𝐺𝑟(𝒳𝑛) the sample inputs sets are built
over random point sets 𝒳𝑛 uniformly distributed in the unit square with sizes 𝑛 ∈
{100, 200, . . . , 2100}. The parameter 𝑟 was arbitrarily set to 15/100, to avoid crossing
the distance between source and sink with too few edges. Computing 𝑝(15/100) ≈ 0.062
shows that asymptotically 6.2% of all possible edges are present. Figure 1 shows two
examples graphs of this sample input set.

Two settings for the source 𝑠 and the sink 𝑡 were considered:

(1) (llur) the lower left 𝑠 = (0, 0) and the upper right corner 𝑡 = (1, 1),
(2) (umlm) the upper middle 𝑠 = (1/2, 1) and the lower middle vertex 𝑡 = (1/2, 0).

They are always part of the point set. But as the random point sets may put the
source and sink in different connected components, only point sets resulting in a single
connected component with 𝑛 vertices where used.

7. DISTRIBUTIONS
As the Ford-Fulkerson method may fail to terminate when real numbers are used as
edge weights, we use three distributions of integers, namely:

(1) (unit) were all edges have capacity 1,
(2) (unif) the uniform discrete distribution were the capacities are independently drawn

from the integer interval [0..100] and
(3) (gauss) a shifted and truncated normal distribution were the capacity of an edge is

chosen according to 250 − ⌊50 ·𝑋⌋ where 𝑋 ∼ 𝒩 (0, 1).

Of course the Z-transformation 𝑍 = 𝜇±𝜎𝑋 turns a standard normal random variable 𝑋
into one with mean 𝜇 = 250 and variance 𝜎2 = 502. As negative capacities are pointless
we discard them and draw again whenever 250 − ⌊50 ·𝑋⌋ < 0 is true. As shown below
this shifts the average edge capacity slightly over 𝜇 = 250.

A:10 U. Laube and M. Nebel

LEMMA 7.1. The average capacities of an edge 𝑒 ∈ 𝐸(𝐺𝑘) are:

E
[︀
capunit(𝑒)

]︀
= 1 E

[︀
capunif(𝑒)

]︀
= 50 E

[︀
capgauss(𝑒)

]︀
=

501

2
+ 𝜖

with 𝜖 ≪ 1.

PROOF. The unit case is obvious and the uniform case follows quickly by calculating

E
[︀
capunif(𝑒)

]︀
=

∑︀100
𝑖=0 𝑖

101
=

1

101

100(100 + 1)

2
=

100

2
= 50.

The gauss case is not difficult but involves tedious calculations (included in the ap-
pendix) with truncated normal distributions resulting in

E
[︀
capgauss(𝑒)

]︀
=

1

Φ(251/50)

∞∑︁
𝑎=0

Φ

(︂
250 − 𝑎

50

)︂
=

501

2
+ 𝜖

with 𝜖 ≪ 1 and Φ(𝑥) denoting the cdf of the standard normal distribution.

Let the total capacity of a vertex be the sum of the capacities of the edges incident with
the vertex. Then we find

LEMMA 7.2. The average total capacities of source 𝑠 and sink 𝑡 are:
E
[︀
cap(·)

]︀
unit unif gauss

llur 2 · 1 2 · 50 2 · 501
2

lmum 3 · 1 3 · 50 3 · 501
2

PROOF. As the edges are independently weighted we have E[cap(𝑣)] = deg(𝑣) ·
E[cap(𝑒)] for 𝑣 ∈ 𝑉 (𝐺𝑘) and 𝑒 ∈ 𝐸(𝐺𝑘). Corollary 4.6 and Lemma 7.1 provide the
results.

As the total flow originating at the source must “fit” into the sink, we expect the
average maxflow to be lower than the average total capacity of the source. In fact we
have the following lemma.

LEMMA 7.3. The average maxflows in a square grid graph 𝐺𝑘 are bounded by:
E
[︀
mf(·)

]︀
unit unif gauss

llur 2 · 1 2 · 3350
101 2 · 222.3

lmum 3 · 1 3 · 3350
101 3 · 222.3

The proof of the lemma is omitted here and included in the appendix.

8. VERIFICATION
As explained in Section A.6.3 using the various sets of graphs as sample inputs for the
maximum likelihood training of the grammar provides us with a number of models
for the behavior of the Ford-Fulkerson method in the different settings. We denote the
models by 𝑀 𝑙

𝑑 where 𝑑 ∈ {unit,unif, gauss} and 𝑙 ∈ {llur, lmum}. The results are listed
in Section 2.

As already pointed out many algorithms – and the same holds for those discussed in
this paper – are not amenable to a theoretical average-case analysis. In particular when
non-uniform distributions of the inputs are involved. The development of the maximum
likelihood analysis technique in [Laube and Nebel 2010] was partly motivated by the
hope to find methods for the analysis of algorithms, that allow us to make statements

Maximum Likelihood Analysis of the Ford-Fulkerson Method on Special Graphs A:11

Table VI. Observed and expected average parameters of the sample input sets for grid graphs.

observed expected
average unit unif gauss unit unif gauss

edge capacity 1 49.9904 250.51 1 50 250.5

llur source/sink capacity 2 99.5 501.1 2 100 501

lmum source/sink capacity 3 150.0 751.9 3 150 751.5

llur maxflow 2 65.1 462.0 2 66.3 444.6

lmum maxflow 3 108.8 701.4 3 99.5 666.9

about the performance, in cases where a purely theoretical approach has little chance
of success.

The maximum likelihood training provides us with a model for the algorithms behav-
ior on the sample set of inputs. This is done by tuning the probabilities of a stochastic
context free grammar as explained in Section A.6. This model is subsequently analyzed
by generating function techniques which yield true results. The independent verifi-
cation allows us to gain confidence that the model describes the algorithms behavior
adequately.

By verifying simpler properties of grids graphs independently from the maximum
likelihood analysis, as shown in the lemmata 7.1, 7.2 and 7.3 for grid graphs we are able
to crosscheck the derived model and gain confidence in the results for other parameters
obtained by the maximum likelihood analysis technique.

The average parameters noted in Table VI were observed over 79 360 000 edges of
the grid graph sample inputs. The expectations are from Lemma 7.1, 7.2 and 7.3
respectively.

For random geometric graphs we don’t have similar results of simple parameters for
crosschecking, as the random processes involved in the generation of random geometric
graphs make a mathematical treatment considerably harder.

9. DISCUSSION
The performance of the strategies dfs and bfs with respect to the number of augmenting
paths needed in the computation of the maxflow is mixed. As evident from Table I
neither one clearly outperforms the other while both are beaten by pfs, that only
needs a constant number of augmenting paths on grid graphs with the given capacity
distributions. The introduction of random iterators to dfs and bfs reduces the number of
augmenting paths in some cases however not greatly as indicated in the two rightmost
column of Table I.

Regarding random geometric graphs the first thing to notice when looking at the
results in Tables I–IV is that randomization has a stabilizing effect on the algorithms
performance. Across the different models, graph search strategies and parameters we
observe the same asymptotic complexity only the constants vary.

As explained in Section 2 the Tables II–IV give the average fraction of all vertices of
the graph that were stored in the queue or stack per path, by dividing the total number
of operations by the number of paths times the number of vertices 𝑛.

This allows the comparison of dfsrnd and bfsrnd to the strategies without random
iterators (dfs, bfs). The observation is, that using random iterators leads to a minor
improvement on the work per path for random geometric graphs only. Hence when
the inputs are already formed by an underlying random process, as is the case with
the random geometric graphs, introducing randomization a second time, via random
iterators, has only a limited effect on the per path workload as expected.

For the average number of paths however the use of random iterators can lead to
significant reductions, up to a third in the case of dfs for random geometric graphs as
shown in Table I. This effect is easily explained by the fact that the saturation of the

A:12 U. Laube and M. Nebel

edges changes after each augmenting path is added to the total flow. Without random
iterators the graph search visits the neighbors in the same order. It thus explores the
same part of the graph where the remaining capacities were lowered by the previous
path. With every further path the average flow per path decreases until the whole area
is saturated. This happens repeatedly until the maxflow is found. Overall more paths
are necessary.

With random iterators every graph search explores different parts of the graph.
Thus avoiding the previously visited areas where only a smaller remaining capacity is
available. This allows more flow per path and thus fewer paths are necessary to reach
the maximum flow.

This also indicates why the pfs graph search strategy has the lowest overall average
number of augmenting paths. First it greedily chooses the maximum remaining capacity
edge, thus aiming for a high flow per path and second our random process used in the
generation of the graph placed the edges randomly in the adjacency lists. Searching the
maximum remaining capacity edge is implicitly like using a random iterator. It exploits
the randomness already present in the input.

We want to check further effects to gain confidence in the models created. In case of
grid graphs Table II gives the average numbers of queue operations when bfs is used
as a graph search strategy. In case of unit edge capacities (𝑀 llur

unit) the whole graph is
placed in the queue during every graph search phase. The intuitive explanation is that
by the time it reaches the sink in the opposite corner of the square grid graph all other
vertecies where closer and thus already in the queue. Changing the location of source
and sink to the midpoints on opposite sides of the grid (𝑀 lmum

unit) only causes about 3/4 of
all vertecies being pushed on the stack. This is due to the top left and top right corners
regions of the grid, containing an 1/8 of all vertecies each, being not pushed on the
stack as the sink is reached before them.

Considering that bfs visits the vertecies in ever growing “circles”, centered in the
source, hints why randomized iterators have little effect. They just change locally the
order in which the neighbors are visited. Globally this only has limited effect since the
closest neighbors are still visited first, only in different orders.

The influence of the choice of the starting locations is also evident for random geomet-
ric graphs from Table I when comparing the rows for models with the same distribution.
Moving source and sink from the corners (llur) to the middle of the boundary (lumu)
increases the area in which edges to neighbors are created from a quarter disk to half a
disk. This factor 2 is present in the average number of paths as well.

Thus despite their inherent simplifications of the models they reflect the true behavior
of the algorithms in many details.

Comparing the Tables II and III with respect to the number of vertices remaining on
the stack (dfs) or in the queue (bfs) one first notices that on average the whole random
geometric graph is pushed on the stack or put in the queue during every graph search
phase. Considering that bfs visits the vertices in ever growing “circles”, centered in
the source, it is not surprising, that it reaches all closer vertices before the sink on the
other corner (llur) or edge (lmum) of the graph.

In case of dfs all vertices are pushed on the stack on average. The left graph in Fig-
ure 2 shows the spanning tree of a single dfs graph search illustrating this observation.
This is due to the random geometric graphs being dense, as all vertices are placed
in the unit square, and the way the graph search strategies from [Sedgewick 2003]
are implemented. They always place all adjacent vertices in the data structure upon
visiting a new vertex while avoiding to insert the same vertex twice.

This is not problematic for bfs as it visits all its neighbors, removing them, before
proceeding. As indicated by the number of gets, that is only slightly less than the

Maximum Likelihood Analysis of the Ford-Fulkerson Method on Special Graphs A:13

Fig. 2. The same graph as in Figure 1 is shown. On the left with the spanning tree of a single dfs graph
search in white and on the right the resulting augmenting path is shown in white.

number of puts, therefore the bfs strategy removes almost all vertices from the queue
while searching for an augmenting paths.

In case of dfs however a larger fraction remains on the stack when the augmenting
paths is found. Only about 27% of the vertices have been removed from the stack. This
too is not surprising, once again it is a check that the models represents correctly the
true behavior of the algorithm. But it leads to an immediate suggestion for improving
the dfs implementation, by changing what is stored on the stack. Instead of placing all
the adjacent vertices on the stack a reference to the last entry in the adjacency list that
was looked at would reduce the number of pushes considerably, thereby saving time
and space, by avoid the needless pushes.

Looking at Table III we find that dfs pushes the whole grid graph on the stack in
model 𝑀 llur

unit too. The reason is the order of the edges in the adjacency list, that is east,
west, north and south. However as they are placed on a stack the order is reversed
when they are removed from the stack. In the 𝑀 llur

unit model dfs must connect the lower
left corner with the upper right corner while preferring the directions north and south
over east and west. This causes the path to meander up and down through the whole
grid graph as it proceeds from left to right. This pattern has a high potential for the
randomized iterators to break the problematic order of the neighbors. Comparing the
fractions of pushes in Table III reductions between 30% to 39% are possible by replacing
dfs with dfsrnd.

This shows how important the order of the neighbors is. Imagine the order being
permuted every time a graph is read into memory and saved back due to careless data
management. The runtime would fluctuate for no apparent reason for the same graph.

However the order of the neighbors is not always problematic. If the source and sink
are in the same column, as in the 𝑀 lmum

unit model, the preference for going north leads
directly to the sink thus in this case only 29% of the vertecies are pushed on the stack
on average. Here the use of randomized iterators actually increases the number of
pushes by a factor of slightly less than 2.4.

Comparing the numbers of operations for dfs and bfs shows that the number of gets
is only slightly less than the number of puts, therefore the bfs strategy removes almost
all vertecies from the queue while searching for an augmenting paths, compared to dfs

A:14 U. Laube and M. Nebel

s

t

s

t

Fig. 3. The model 𝑀 lmum
unit with 𝑘 = 15 on the left and 𝑘 = 10 and on the right. Grey edges were visited

during the search for the three augmenting paths shown as solid black lines on the left and as black arrows
on the right.

where a larger fraction remains on the stack when the augmenting paths is found. This
too is not surprising, once again it is a check that the models represents correctly the
true behavior of the algorithm.

As announced in Section 4 the choice of the location of source and sink has a drastic
effect on the performance of the graph search strategies, dfs in particular. An oversight
in the calculation of the location of source and sink vertecies in the lmum setting caused
the source and sink to be placed in two adjacent “columns” in the grid when the “side-
length” 𝑘 of the grid graph 𝐺𝑘 is even, as explained in the previous section. In the case
of unit edge capacities 𝑀 lmum

unit Figure 3 illustrates the odd-even effect.
On the left the three augmenting paths head straight north. The grey edges are the

ones that where explored during the graph search, leading to slightly under 59% of the
vertecies being pushed on the stack. On the right the three augmenting paths are shown
using arrows because the third path redirects some of the flow of the second one. Here
the whole graph is explored. As the behavior of the algorithm alternates between the
two cases for odd and even side-lengths 𝑘 used to create the 𝑀 lmum

unit model the average
is roughly (1 + 0.59)/2 ≈ 0.8. As the augmenting paths are determined independently of
each other some vertecies are pushed more often than others we have overall the 0.86𝑛
reported in Table III. The odd-even effect is present in the 𝑀 lmum

unit model too as can be
seen in Figure 4 for the total number of paths and pushes. The two functions plotted on
the right are 0.297𝑛 log2(𝑛) and 0.175𝑛 log2(𝑛) indicating that odd inputs incur roughly
60% more pushes.

The results for pfs in Table IV show that the models are not sufficiently trained to
reflect seldom events properly. Table I lists only around 3 to 5 paths on average for pfs
independently of the size of the graph. Diving by those small constants yields fractions
larger than 1 in Table IV, which are of course pointless as vertecies are only removed
after the priority queue is initialized with all vertecies in every search phase. For the
lower operation fractions larger than 1 are possible. This indicates that on average the
priority was updated more than once.

Table V presents a different point of view. As explained in Section 2 an edge is
considered visited if both its vertecies are removed from the stack or queue. The average
fraction of edges visited per path as listed in Table V shows nicely the stabilizing effect

Maximum Likelihood Analysis of the Ford-Fulkerson Method on Special Graphs A:15

•
•

• •

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

500 1000 1500 2000 2500 3000 3500
n

5

10

15

20

25

30

Paths
dfs umlm gauss

•• • •
• •

•
•

•

•

•

•

•

•

•

•

•

•

•

•

500 1000 1500 2000 2500 3000 3500
n

10 000

20 000

30 000

40 000

50 000

60 000

Pushes
dfs umlm gauss

Fig. 4. Total number of paths and pushes for dfs in the 𝑀 lmum
unit model.

on the performance that the random iterators in case of dfsrnd have. The fraction for
dfsrnd is around 0.25 across the different models. As discussed above bfs does not profit
from the use of randomized iterators, this is confirmed from the visited edges point of
view as well.

Considering the above, our recommendation for a practitioner would be to use the
pfs search strategy on random geometric graphs. The average number of paths is the
least of the search strategies considered here, as it benefits from the randomness in the
inputs. As the implementation of dfs is clearly simpler than the implementation of pfs
it would be interesting to measure how big the impact of the suggested improvements
from above is.

And for grid graphs the dfsrnd search strategy is a good choice. On average the
smallest number of edges is involved and the number of paths is low, sometimes even
a constant albeit not as low as for pfs. However the implementation of dfs is clearly
simpler than the implementation of pfs.

As there is no shortage of other graph classes like random graphs, random geometric
graphs, small-world graphs, complete graphs, etc. extending the study to include differ-
ent inputs is one idea for further research, as well as other graph search strategies (e.g.
the A*-heuristic if a suitable distance function can be provided). Perhaps replacing the
queue in bfs by a randomized queue is equally effective as the use of the randomized
iterators in dfs? Meta graph search strategies are used by practitioners, where a dfs
run is started in the source and a second dfs run begins in the sink and the two runs
are interleaved until they meet. We believe that a traditional average-case analysis of
such a meta graph search strategy would be challenging. With the maximum likelihood
method used in this study models for the average-case behavior of such a meta graph
search strategy could be obtained and analyzed semi-automatically.

The maximum likelihood method itself is subject to further research as well. The
performance of graphs is typically measured in |𝑉 | and |𝐸|. The grid graphs allowed us
to set |𝑉 | = 𝑛 and use |𝐸| = 2(𝑛−

√
𝑛). Extending the maximum likelihood method to

allow multiple size measures in a single analysis would be a good enhancement. The
average-case analysis of string matching algorithms where the length of the text and
the length of the pattern has an influence on the performance immediately comes to
ones mind.

10. CONCLUSION
In conclusion original results for multiple Ford-Fulkerson implementations were ob-
tained by a maximum likelihood analysis. Being able to rediscover the stabilizing
effect of randomization for average-case results as well as checking simple cases of

A:16 U. Laube and M. Nebel

the algorithm’s behavior by inspection verifies that the probability model derived from
experiments reflects the true behavior of the algorithms well enough to provide predic-
tions that are useful for practitioners and guide further theoretical work. For example
knowing that the number of paths is a constant and therefore does not depend on the
size of the input is a valuable insight when starting an analysis.

APPENDIX
A.1. Grid graph properties – Proof of Lemma 4.5
The grid graph 𝐺𝑗,𝑘 has the following properties:

|𝑉 (𝐺𝑗,𝑘)| = 𝑗 · 𝑘, |𝐸(𝐺𝑗,𝑘)| = (𝑗 − 1)𝑘 + 𝑗(𝑘 − 1) = 2𝑗 · 𝑘 − 𝑗 − 𝑘,

there are 4 vertices of degree 2, 2𝑘 + 2𝑗 − 8 vertices of degree 3 and (𝑘 − 2)(𝑗 − 2) vertices
of degree 4.

PROOF. Assume without loss of generality, that the underlying path graphs 𝑃𝑗 and
𝑃𝑘 of the grid graph 𝐺𝑗,𝑘 = 𝑃𝑗 � 𝑃𝑘 are not only defined on [1..𝑗] and [1..𝑘] respectively,
but the elements of the edge sets have the form (𝑖, 𝑖 + 1). According to the definition
of the grid graph its edges then have the form

{︀
(𝑢, 𝑖), (𝑢, 𝑖 + 1)

}︀
or
{︀

(𝑖, 𝑣), (𝑖 + 1, 𝑣)
}︀

,
𝑢 ∈ [1..𝑘], 𝑣 ∈ [1..𝑗], intuitively the vertical and horizontal edges of the grid graph.

The 2 ·(𝑘−1+𝑗−1) vertices on the “edges” of the grid are of the form (1, ∙), (𝑘, ∙), (∙, 𝑗)
and (∙, 1). Four of them are on two “edges” of the grid: (1, 1), (1, 𝑗), (𝑘, 𝑗) and (𝑘, 1) thus
in the “corners” of the grid and have degree 2, as there are only two ways to increase or
decrease each element of the pairs and stay within the ranges [1..𝑘] and [1..𝑗], the other
have 3 degrees of freedom. The remaining (𝑘− 2)(𝑗 − 2) inner vertices have 4 degrees of
freedom.

Thus |𝑉 (𝐺𝑗,𝑘)| = 4+2·(𝑘−2+𝑗−2)+(𝑘−2)(𝑗−2) = 4+2𝑘+2𝑗−8+𝑗𝑘−2𝑗−2𝑘+4 = 𝑗 ·𝑘
and counting each edge from both ends yields

2 · |𝐸(𝐺𝑗,𝑘)| = 4 · 2 + 3 · 2 · (𝑘 − 2 + 𝑗 − 2) + 4 · (𝑘 − 2)(𝑗 − 2) = 4𝑗 · 𝑘 − 2𝑗 − 2𝑘.

A.2. Random geometric graph properties – Proof of Theorem 5.2
The average degree of an arbitrary node in a random geometric graph 𝑣 ∈ 𝑉

(︀
𝐺𝑟(𝒳𝑛)

)︀
on

point set 𝒳𝑛 uniformly distributed over the unit square is:

E
[︀
deg(𝑣)

]︀
= 𝑛 · 𝑝(𝑟) with 𝑝(𝑟) = 𝑟2

(︂
𝜋 +

𝑟(3𝑟 − 16)

6

)︂
.

The expected degree of a vertex 𝑣 depends on its position in the unit square. In the
center [𝑟, 1 − 𝑟]2 square we have with 𝑟 = 15/100

E[deg(𝑣)] = 𝑛
𝜋𝑟2

1
≈ 0.071𝑛

as this fraction of all 𝑛 nodes in the disk around node 𝑣 are connected to 𝑣. This is less
near the boundary as no full disk with radius 𝑟 = 15/100 fits in there. On the boundary
we have

E[deg(𝑣)] = 𝑛
𝜋𝑟2

2
≈ 0.035𝑛

as there is only half a disk possible. In the corner only a quarter disk fits, thus

E[deg(𝑣)] = 𝑛
𝜋𝑟2

4
≈ 0.018𝑛.

Maximum Likelihood Analysis of the Ford-Fulkerson Method on Special Graphs A:17

Thus to proof the theorem we have to determine the average size of the neighborhood
including the boundary effects when the vertex 𝑣 is near the boundaries of the unit
square.

PROOF. To do this we integrate over the unit square to determine the average size
of the neighborhood 𝑝(𝑟). Exploiting the symmetry of the unit square, integrating over
a single quadrant [0, 1/2]2 is enough:

𝑝(𝑟) = 4 ·
∫︁ 1

2

0

∫︁ 1
2

0

𝐴(𝑟, 𝑥, 𝑦) 𝑑𝑥𝑑𝑦.

The contribution 𝐴(𝑥, 𝑦, 𝑟) obviously varies with the location (𝑥, 𝑦) and the radius 𝑟 of
the neighborhood. We can distinguish four rectangles in the quadrant by splitting it
horizontally and vertically in the point (𝑟, 𝑟). The large square [𝑟, 1/2]2 allows for a full
disk at all positions. In the two rectangles [0, 𝑟] × [𝑟, 1/2] and [𝑟, 1/2] × [0, 𝑟] a segment of
the disk is cut off by the boundary. And on the small square [0, 𝑟]2 this happens on both
boundaries. Thus we arrive at

𝑝(𝑟) = 4 ·

(︃∫︁ 1
2

𝑟

∫︁ 1
2

𝑟

𝐴(𝑟) 𝑑𝑥𝑑𝑦 + 2 ·
∫︁ 𝑟

0

∫︁ 1
2

𝑟

𝐴(𝑟, 𝑦) 𝑑𝑥𝑑𝑦 +

∫︁ 𝑟

0

∫︁ 𝑟

0

𝐴(𝑟, 𝑥, 𝑦) 𝑑𝑥𝑑𝑦.

)︃
(1)

The first integral is easily solved as the contribution does not depend on the location
(𝑥, 𝑦).∫︁ 1

2

𝑟

∫︁ 1
2

𝑟

𝐴(𝑟) 𝑑𝑥𝑑𝑦 = 𝐴(𝑟)

∫︁ 1
2

𝑟

∫︁ 1
2

𝑟

1 𝑑𝑥𝑑𝑦 = 𝜋𝑟2
∫︁ 1

2

𝑟

∫︁ 1
2

𝑟

1 𝑑𝑥𝑑𝑦 = 𝜋𝑟2 ·
(︂

1

2
− 𝑟

)︂2

.

Thus the contribution 𝜋𝑟2 is weighted with the area of the larger square (1/2 − 𝑟)2.
The two rectangles are easy too, as the contribution only depends on the change of

the location in one dimension.

2 ·
∫︁ 𝑟

0

∫︁ 1
2

𝑟

𝐴(𝑟, 𝑦) 𝑑𝑥𝑑𝑦 = 2 ·
∫︁ 𝑟

0

𝐴(𝑟, 𝑦)

∫︁ 1
2

𝑟

1 𝑑𝑥𝑑𝑦

= 2 ·
∫︁ 𝑟

0

𝐴(𝑟, 𝑦)

(︂
1

2
− 𝑟

)︂
𝑑𝑦 = (1 − 2𝑟)

∫︁ 𝑟

0

𝐴(𝑟, 𝑦) 𝑑𝑦.

The contribution 𝐴(𝑟, 𝑦) is just the area of disk minus the segment that protrudes over
the boundary by 𝑟 − 𝑦.

𝐴(𝑟, 𝑦) = 𝐴∘(𝑟) −𝐴𝑆𝐺(𝑟, 𝑦) = 𝜋𝑟2 −𝐴𝑆𝐺(𝑟, 𝑦).

The area of the segment 𝐴𝑆𝐺(𝑟, 𝑦) is just the area of the sector of the disk less the equal
sided triangle formed by the chord and the radii whose height is 𝑦 when the segment
protrudes by 𝑟 − 𝑦. Thus

𝐴𝑆𝐺(𝑟, 𝑦) = 𝐴𝑆𝐾(𝑟, 𝑦) −𝐴Δ(𝑟, 𝑦),

𝐴Δ(𝑟, 𝑦) =
𝑠𝑦

2
.

The length of half the chord ist just
𝑠

2
=
√︀

𝑟2 − 𝑦2

by Pythagoras’ theorem. Accordingly

𝐴Δ(𝑟, 𝑦) = 𝑦 ·
√︀
𝑟2 − 𝑦2.

A:18 U. Laube and M. Nebel

The area of the sector 𝐴𝑆𝐾(𝑟, 𝑦) depends on its apex angle 𝛼:

𝐴𝑆𝐾(𝑟, 𝑦) = 𝜋𝑟2
𝛼

2𝜋
=

𝛼

2
𝑟2.

We have to express this angle by 𝑦 and 𝑟. Another application of Pythagoras’ theorem
shows that half the angle is just 𝛼

2 = arccos
(︀
1 − 𝑟−𝑦

𝑟

)︀
yielding

𝐴𝑆𝐺(𝑟, 𝑦) = 𝑟2 arccos

(︂
1 − 𝑟 − 𝑦

𝑟

)︂
− 𝑦 ·

√︀
𝑟2 − 𝑦2

= 𝑟2 arccos
(︁𝑦
𝑟

)︁
− 𝑦 ·

√︀
𝑟2 − 𝑦2.

The final contribution is

𝐴(𝑟, 𝑦) = 𝜋𝑟2 −
(︀
𝑟2 arccos

(︁𝑦
𝑟

)︁
− 𝑦 ·

√︀
𝑟2 − 𝑦2

)︀
= 𝑟2

(︁
𝜋 − arccos

(︁𝑦
𝑟

)︁)︁
+ 𝑦 ·

√︀
𝑟2 − 𝑦2,

and integrating over it yields

(1 − 2𝑟)

∫︁ 𝑟

0

𝐴(𝑟, 𝑦) 𝑑𝑦 = (1 − 2𝑟)

[︂∫︁ 𝑟

0

𝑟2
(︁
𝜋 − arccos

(︁𝑦
𝑟

)︁)︁
+ 𝑦 ·

√︀
𝑟2 − 𝑦2 𝑑𝑦

]︂
= (1 − 2𝑟)

[︂
𝑟2
∫︁ 𝑟

0

𝜋 − arccos
(︁𝑦
𝑟

)︁
𝑑𝑦 +

∫︁ 𝑟

0

𝑦 ·
√︀

𝑟2 − 𝑦2 𝑑𝑦

]︂
= (1 − 2𝑟)

[︂
𝑟2
(︀
𝜋𝑟 − 𝑟

)︀
+

𝑟3

3

]︂
= (1 − 2𝑟)

[︂
𝑟3(𝜋 − 1) +

𝑟3

3

]︂
= (1 − 2𝑟)𝑟3

(︂
(𝜋 − 1) +

1

3

)︂
= (1 − 2𝑟)𝑟3

(︂
𝜋 − 2

3

)︂
= 2

(︂
1

2
− 𝑟

)︂
𝑟 · 𝑟2

(︂
𝜋 − 2

3

)︂
.

This is again of the form where the contribution 𝑟2(𝜋 − 2/3) is weighted with area of
the two rectangles 𝑟(1/2 − 𝑟). The antiderivatives used above appear again in the next
cases and are derived afterwards.

The small square is more difficult to solve. The easier case is encountered when
the relation

√︀
𝑥2 + 𝑦2 ≥ 𝑟 is true. The segments of the disk protruding over two

boundaries do not overlap and they can simply be subtracted as done before. However
when

√︀
𝑥2 + 𝑦2 < 𝑟 holds the overlapping part would be subtracted twice. So we add a

correction term. Separating the two cases gives∫︁ 𝑟

0

∫︁ 𝑟

0

𝐴(𝑟, 𝑥, 𝑦) 𝑑𝑦𝑑𝑥 =

∫︁ 𝑟

0

[︃∫︁ √
𝑟2−𝑥2

0

𝐴<(𝑟, 𝑥, 𝑦) 𝑑𝑦 +

∫︁ 𝑟

√
𝑟2−𝑥2

𝐴≥(𝑟, 𝑥, 𝑦) 𝑑𝑦

]︃
𝑑𝑥. (2)

The integrands are

𝐴≥(𝑟, 𝑥, 𝑦) = 𝜋𝑟2 −𝐴𝑆𝐺(𝑟, 𝑥) −𝐴𝑆𝐺(𝑟, 𝑦)

𝐴<(𝑟, 𝑥, 𝑦) = 𝐴≥(𝑟, 𝑥, 𝑦) + 𝐾(𝑟, 𝑥, 𝑦) (3)

Maximum Likelihood Analysis of the Ford-Fulkerson Method on Special Graphs A:19

= 𝜋𝑟2 −𝐴𝑆𝐺(𝑟, 𝑥) −𝐴𝑆𝐺(𝑟, 𝑦) + 𝐾(𝑟, 𝑥, 𝑦).

We can use (3) to rewrite (2)∫︁ 𝑟

0

∫︁ 𝑟

0

𝐴(𝑟, 𝑥, 𝑦) 𝑑𝑦𝑑𝑥 =

∫︁ 𝑟

0

[︃∫︁ √
𝑟2−𝑥2

0

𝐴≥(𝑟, 𝑥, 𝑦) + 𝐾(𝑟, 𝑥, 𝑦) 𝑑𝑦

+

∫︁ 𝑟

√
𝑟2−𝑥2

𝐴≥(𝑟, 𝑥, 𝑦) 𝑑𝑦

]︂
𝑑𝑥

=

∫︁ 𝑟

0

[︃∫︁ √
𝑟2−𝑥2

0

𝐾(𝑟, 𝑥, 𝑦) 𝑑𝑦 +

∫︁ 𝑟

0

𝐴≥(𝑟, 𝑥, 𝑦) 𝑑𝑦

]︃
𝑑𝑥.

To determine 𝐴≥(𝑟, 𝑥, 𝑦) we already know all the necessary expressions and get:

𝐴≥(𝑟, 𝑥, 𝑦) = 𝜋𝑟2 − 𝑟2 arccos
(︁𝑦
𝑟

)︁
+ 𝑦 ·

√︀
𝑟2 − 𝑦2 − 𝑟2 arccos

(︁𝑥
𝑟

)︁
+ 𝑥 ·

√︀
𝑟2 − 𝑥2

= 𝑟2
(︁
𝜋 − arccos

(︁𝑦
𝑟

)︁
− arccos

(︁𝑥
𝑟

)︁)︁
+ 𝑦 ·

√︀
𝑟2 − 𝑦2 + 𝑥 ·

√︀
𝑟2 − 𝑥2

= 𝑟2
(︁

arcsin
(︁𝑦
𝑟

)︁
+ arcsin

(︁𝑥
𝑟

)︁)︁
+ 𝑦 ·

√︀
𝑟2 − 𝑦2 + 𝑥 ·

√︀
𝑟2 − 𝑥2.

Thus it remains to determine the correction term 𝐾(𝑟, 𝑥, 𝑦). It describes a part of the
area of a disk that looks like a segment offset from the center. We start the derivation
with a full disk. In Cartesian coordinates we have∫︁ 𝑟

−𝑟

∫︁ √
𝑟2−𝑥2

−
√
𝑟2−𝑥2

1 𝑑𝑦𝑑𝑥 = 𝜋𝑟2,

because when moving along the diameter [−𝑟, 𝑟] we can only move as far as
[−

√
𝑟2 − 𝑥2,

√
𝑟2 − 𝑥2] in the perpendicular direction to stay with in the disk. Halv-

ing that interval gives a semi disk∫︁ 𝑟

−𝑟

∫︁ √
𝑟2−𝑥2

0

1 𝑑𝑦𝑑𝑥 =
𝜋𝑟2

2
.

Halving the other direction too yields a quarter disk∫︁ 𝑟

0

∫︁ √
𝑟2−𝑥2

0

1 𝑑𝑦𝑑𝑥 =
𝜋𝑟2

4
.

Limiting the integral further by cutting of stripes with the width to 0 < 𝑎 < 𝑟 in one
and 0 < 𝑏 < 𝑟 in the other direction we get:

𝐾(𝑟, 𝑎, 𝑏) =

∫︁ √
𝑟2−𝑏2

𝑎

∫︁ √
𝑟2−𝑥2

𝑏

1 𝑑𝑦𝑑𝑥.

Obviously 𝑟 >
√
𝑎2 + 𝑏2 has to be true otherwise the area would be empty. Thus

𝐾(𝑟, 𝑎, 𝑏) =

∫︁ √
𝑟2−𝑏2

𝑎

√︀
𝑟2 − 𝑥2 − 𝑏 𝑑𝑥

=

[︂
𝑟2

2
arcsin(𝑥/𝑟) +

𝑥

2

√︀
𝑟2 − 𝑥2 − 𝑏𝑥

]︂√𝑟2−𝑏2

𝑎

=

(︃
𝑟2

2
arcsin

(︁√︀
𝑟2 − 𝑏2/𝑟

)︁
+

√
𝑟2 − 𝑏2

2

√︁
𝑟2 −

√︀
𝑟2 − 𝑏2

2
− 𝑏
√︀
𝑟2 − 𝑏2

)︃

A:20 U. Laube and M. Nebel

−
(︂
𝑟2

2
arcsin(𝑎/𝑟) +

𝑎

2

√︀
𝑟2 − 𝑎2 − 𝑏𝑎

)︂
=

𝑟2

2
arcsin

(︃√
𝑟2 − 𝑏2

𝑟

)︃
+

1

2

√︀
𝑟2 − 𝑏2

√︀
𝑟2 − 𝑟2 + 𝑏2 − 𝑏

√︀
𝑟2 − 𝑏2

− 𝑟2

2
arcsin

(︁𝑎
𝑟

)︁
− 𝑎

2

√︀
𝑟2 − 𝑎2 + 𝑏𝑎

= 𝑏𝑎− 𝑎

2

√︀
𝑟2 − 𝑎2 +

√︀
𝑟2 − 𝑏2

√
𝑏2

2
− 𝑏
√︀
𝑟2 − 𝑏2

+
𝑟2

2
arcsin

(︃√
𝑟2 − 𝑏2

𝑟

)︃
− 𝑟2

2
arcsin

(︁𝑎
𝑟

)︁
= 𝑏𝑎− 𝑎

2

√︀
𝑟2 − 𝑎2 +

𝑏

2

√︀
𝑟2 − 𝑏2 − 𝑏

√︀
𝑟2 − 𝑏2

+
𝑟2

2

(︃
arcsin

(︃√
𝑟2 − 𝑏2

𝑟

)︃
− arcsin

(︁𝑎
𝑟

)︁)︃

= 𝑏𝑎− 𝑎

2

√︀
𝑟2 − 𝑎2 − 𝑏

2

√︀
𝑟2 − 𝑏2 +

𝑟2

2

(︃
arcsin

(︃√
𝑟2 − 𝑏2

𝑟

)︃
− arcsin

(︁𝑎
𝑟

)︁)︃
.

Solving the remaining integrals∫︁ 𝑟

0

𝐴≥(𝑟, 𝑥, 𝑦) 𝑑𝑦 =

∫︁ 𝑟

0

𝑟2
(︁

arcsin
(︁𝑦
𝑟

)︁
+ arcsin

(︁𝑥
𝑟

)︁)︁
+ 𝑦 ·

√︀
𝑟2 − 𝑦2 + 𝑥 ·

√︀
𝑟2 − 𝑥2 𝑑𝑦

=𝑟2 arcsin
(︁𝑥
𝑟

)︁
[𝑦]

𝑟
0 + 𝑟2

∫︁ 𝑟

0

arcsin
(︁𝑦
𝑟

)︁
𝑑𝑦 + 𝑥

√︀
𝑟2 − 𝑥2[𝑦]𝑟0

+

∫︁ 𝑟

0

𝑦
√︀
𝑟2 − 𝑦2 𝑑𝑦

=𝑟3 arcsin
(︁𝑥
𝑟

)︁
+ 𝑟2

[︁
𝑦 arcsin

(︁𝑦
𝑟

)︁
+
√︀
𝑟2 − 𝑦2

]︁𝑟
0

+ 𝑟𝑥
√︀
𝑟2 − 𝑥2

+

[︂
−1

3
(𝑟2 − 𝑦2)3/2

]︂𝑟
0

=𝑟3 arcsin
(︁𝑥
𝑟

)︁
+

𝑟3𝜋

2
− 𝑟3 + 𝑟𝑥

√︀
𝑟2 − 𝑥2 +

𝑟3

3

=𝑟3 arcsin
(︁𝑥
𝑟

)︁
+ 𝑟3

(︂
𝜋

2
− 2

3

)︂
+ 𝑟𝑥

√︀
𝑟2 − 𝑥2

and∫︁ √
𝑟2−𝑥2

0

𝐾(𝑟, 𝑥, 𝑦) 𝑑𝑦 =

∫︁ √
𝑟2−𝑥2

0

𝑥𝑦 − 𝑥

2

√︀
𝑟2 − 𝑥2 − 𝑦

2

√︀
𝑟2 − 𝑦2

+
𝑟2

2

(︃
arcsin

(︃√︀
𝑟2 − 𝑦2

𝑟

)︃
− arcsin

(︁𝑥
𝑟

)︁)︃
𝑑𝑦

= 𝑥
[︀
𝑦2/2

]︀√𝑟2−𝑥2

0
− 𝑥

2

√︀
𝑟2 − 𝑥2[𝑦]

√
𝑟2−𝑥2

0 − 1

2

∫︁ √
𝑟2−𝑥2

0

𝑦
√︀

𝑟2 − 𝑦2 𝑑𝑦

Maximum Likelihood Analysis of the Ford-Fulkerson Method on Special Graphs A:21

+
𝑟2

2

∫︁ √
𝑟2−𝑥2

0

arcsin

(︃√︀
𝑟2 − 𝑦2

𝑟

)︃
𝑑𝑦 − 𝑟2

2
arcsin

(︁𝑥
𝑟

)︁
[𝑦]

√
𝑟2−𝑥2

0

=
𝑥

2
(𝑟2 − 𝑥2) − 𝑥

2
(𝑟2 − 𝑥2) − 1

2

[︂
−1

3
(𝑟2 − 𝑦2)3/2

]︂√𝑟2−𝑥2

0

− 𝑟2

2

√︀
𝑟2 − 𝑥2 arcsin

(︁𝑥
𝑟

)︁
+

𝑟2

2

[︃
𝑦 arcsin

(︃√︂
1 − 𝑦2

𝑟2

)︃
+
√︀
𝑟2 − 𝑦2

]︃√𝑟2−𝑥2

0

=
𝑥3

6
− 𝑟3

6
− 𝑟2

2

√︀
𝑟2 − 𝑥2 arcsin

(︁𝑥
𝑟

)︁
+

𝑟2

2

√︀
𝑟2 − 𝑥2 arcsin

⎛⎝
√︃

1 −
√
𝑟2 − 𝑥2

2

𝑟2

⎞⎠
−
√︁
𝑟2 −

√︀
𝑟2 − 𝑥2

2
+

𝑟2

2

√
𝑟2

=
𝑥3

6
− 𝑟3

6
− 𝑟2

2

√︀
𝑟2 − 𝑥2 arcsin

(︁𝑥
𝑟

)︁
+

𝑟2

2

√︀
𝑟2 − 𝑥2 arcsin

(︁𝑥
𝑟

)︁
− 𝑥𝑟2

2
+

𝑟3

2

=
𝑥3

6
+

𝑟3

3
− 𝑥𝑟2

2

and combining the above, we get

∫︁ 𝑟

0

∫︁ 𝑟

0

𝐴(𝑟, 𝑥, 𝑦) 𝑑𝑦𝑑𝑥 =

∫︁ 𝑟

0

𝑟3 arcsin
(︁𝑥
𝑟

)︁
+ 𝑟3

(︂
𝜋

2
− 2

3

)︂
+ 𝑟𝑥

√︀
𝑟2 − 𝑥2 +

𝑥3

6
+

𝑟3

3
− 𝑥𝑟2

2
𝑑𝑥

= 𝑟3
∫︁ 𝑟

0

arcsin
(︁𝑥
𝑟

)︁
𝑑𝑥 + 𝑟3

(︂
𝜋

2
− 2

3

)︂
[𝑥]𝑟0 + 𝑟

∫︁ 𝑟

0

𝑥
√︀
𝑟2 − 𝑥2 𝑑𝑥

+
1

6

[︂
𝑥4

4

]︂𝑟
0

+
𝑟3

3
[𝑥]𝑟0 −

𝑟2

2

[︂
𝑥2

2

]︂𝑟
0

= 𝑟3
[︁
𝑥 arcsin

(︁𝑥
𝑟

)︁
+
√︀
𝑟2 − 𝑥2

]︁𝑟
0

+ 𝑟4
(︂
𝜋

2
− 2

3

)︂
+ 𝑟

[︂
−1

3
(𝑟2 − 𝑥2)3/2

]︂𝑟
0

+
𝑟4

24
+

𝑟4

3
− 𝑟4

4

=
𝜋

2
𝑟4 − 𝑟4 + 𝑟4

(︂
𝜋

2
− 1

3

)︂
+

𝑟4

3
+

𝑟4

24
− 𝑟4

4

= 𝜋𝑟4 − 24

24
𝑟4 +

1

24
𝑟4 − 6

24
𝑟4 = 𝑟2 · 𝑟2

(︂
𝜋 − 29

24

)︂
.

A:22 U. Laube and M. Nebel

Thus once more the contribution 𝑟2(𝜋 − 29/24) is weighted by the area 𝑟2. With all
integrals solved we can combine the results in (1) and arrive at

𝑝(𝑟) = 4 ·

(︃
𝜋𝑟2 ·

(︂
1

2
− 𝑟

)︂2

+ (1 − 2𝑟)𝑟3
(︂
𝜋 − 2

3

)︂
+ 𝑟4

(︂
𝜋 − 29

24

)︂)︃

= 𝜋𝑟2 (1 − 2𝑟)
2

+ (1 − 2𝑟)𝑟3
(︂

4𝜋 − 8

3

)︂
+ 𝑟4

(︂
4𝜋 − 29

6

)︂
= 𝜋𝑟2 − 4𝜋𝑟3 + 4𝜋𝑟4 + 𝑟3

(︂
4𝜋 − 8

3

)︂
− 𝑟4

(︂
8𝜋 − 16

3

)︂
+ 𝑟4

(︂
4𝜋 − 29

6

)︂
= 𝜋𝑟2 − 16

6
𝑟3 +

32

6
𝑟4 − 29

6
𝑟4

= 𝑟2
(︂
𝜋 +

3𝑟2 − 16𝑟

6

)︂
= 𝑟2

(︂
𝜋 +

𝑟(3𝑟 − 16)

6

)︂
for the average size of the neighborhood. As expected with 𝑟 = 15/100 it is 𝑝(𝑟) ≈ 0.062,
which is a little less than a full disk 𝜋𝑟2 ≈ 0.071 due to the boundary effects.

The following five integrals have been used in the previous proof.

LEMMA A.1. ∫︁
arcsin(𝑥) 𝑑𝑥 = 𝑥 arcsin(𝑥) +

√︀
1 − 𝑥2 + 𝐶

PROOF. Starting with integration by parts∫︁
𝑢′𝑣 = 𝑢𝑣 −

∫︁
𝑢𝑣′

with

𝑢′ = 1 ; 𝑢 = 𝑥 and 𝑣 = arcsin(𝑥) ; 𝑣′ =
𝑑

𝑑𝑥
arcsin(𝑥)

yields an easier integral. We must first determine 𝑣′. Let 𝑦 = arcsin(𝑥) then 𝑥 = sin(𝑦)
and use implicit differentiation. Then solve for 𝑑𝑦/𝑑𝑥 and apply Pythagoras’ Theorem
and substitute 𝑥 = sin(𝑦).

𝑑

𝑑𝑥
𝑥 =

𝑑

𝑑𝑥
sin(𝑦),

1 =
𝑑

𝑑𝑥
𝑦 cos(𝑦),

𝑑

𝑑𝑥
arcsin(𝑥) =

𝑑

𝑑𝑥
𝑦 =

1

cos(𝑦)
=

1√︁
1 − sin2(𝑦)

=
1√

1 − 𝑥2
.

Hence we must now solve the integral on the right-hand side of∫︁
arcsin(𝑥) 𝑑𝑥 = 𝑥 arcsin(𝑥) −

∫︁
𝑥√

1 − 𝑥2
𝑑𝑥. (4)

Subsituting with 𝑘 = 1 − 𝑥2 thus

𝑑

𝑑𝑥
𝑘 =

𝑑

𝑑𝑥
1 − 𝑥2 = −2𝑥 ;

𝑑𝑘

−2𝑥
= 𝑑𝑥,

Maximum Likelihood Analysis of the Ford-Fulkerson Method on Special Graphs A:23

∫︁
𝑥√

1 − 𝑥2
𝑑𝑥 =

∫︁
𝑥√
𝑘

𝑑𝑘

−2𝑥
= −1

2

∫︁
1√
𝑘
𝑑𝑘 = −1

2

∫︁
𝑘−1/2 𝑑𝑘 = −1

2

𝑘1/2

1/2
= −

√
𝑘.

Backsubstitution yields ∫︁
𝑥√

1 − 𝑥2
𝑑𝑥 = −

√︀
1 − 𝑥2.

Inserting this into (4) gives the result.

LEMMA A.2. ∫︁
𝑦
√︀
𝑟2 − 𝑦2 𝑑𝑦 = −1

3

(︀
𝑟2 − 𝑦2

)︀3/2
+ 𝐶

PROOF. Substituting with 𝑘 = 𝑟2 − 𝑦2 hence
𝑑

𝑑𝑦
𝑘 =

𝑑

𝑑𝑦
𝑟2 − 𝑦2 = −2𝑦 ;

𝑑𝑘

−2𝑦
= 𝑑𝑦,

∫︁
𝑦
√︀
𝑟2 − 𝑦2 𝑑𝑦 =

∫︁
𝑦
√
𝑘

𝑑𝑘

−2𝑦
= −1

2

∫︁ √
𝑘 𝑑𝑘 = −1

2

𝑘3/2

3/2
= −1

3
(𝑟2 − 𝑦2)3/2 + 𝐶.

LEMMA A.3. ∫︁
arcsin(𝑥/𝑟) 𝑑𝑥 = 𝑥 arcsin(𝑥/𝑟) +

√︀
𝑟2 − 𝑥2 + 𝐶

PROOF. Starting with integration by parts∫︁
𝑢′𝑣 = 𝑢𝑣 −

∫︁
𝑢𝑣′

with

𝑢′ = 1 ; 𝑢 = 𝑥 and 𝑣 = arcsin(𝑥/𝑟) ; 𝑣′ =
𝑑

𝑑𝑥
arcsin(𝑥/𝑟)

yields an easier integral. We must first determine 𝑣′. Let 𝑦 = arcsin(𝑥/𝑟) then 𝑥/𝑟 =
sin(𝑦) and use implicit differentiation. Then solve for 𝑑𝑦/𝑑𝑥 and apply Pythagoras’
Theorem and substitute 𝑥/𝑟 = sin(𝑦).

𝑑

𝑑𝑥

𝑥

𝑟
=

𝑑

𝑑𝑥
sin(𝑦),

1

𝑟
=

𝑑

𝑑𝑥
𝑦 cos(𝑦),

𝑑

𝑑𝑥
arcsin(𝑥/𝑟) =

𝑑

𝑑𝑥
𝑦 =

1

𝑟 cos(𝑦)
=

1

𝑟
√︁

1 − sin2(𝑦)
=

1

𝑟
√︀

1 − (𝑥/𝑟)2
𝑟>0
=

1√
𝑟2 − 𝑥2

.

Or with Lemma A.1 from before the chain rule gives us
𝑑

𝑑𝑥
arcsin(𝑥/𝑟) =

1√︁
1 − 𝑥2

𝑟2

·
(︁𝑥
𝑟

)︁′ 𝑟>0
=

1√
𝑟2 − 𝑥2

.

Hence we must now solve the integral on the right-hand side of∫︁
arcsin(𝑥/𝑟) 𝑑𝑥 = 𝑥 arcsin(𝑥/𝑟) −

∫︁
𝑥√

𝑟2 − 𝑥2
𝑑𝑥. (5)

A:24 U. Laube and M. Nebel

Subsituting with 𝑘 = 𝑟2 − 𝑥2 thus
𝑑

𝑑𝑥
𝑘 =

𝑑

𝑑𝑥
𝑟2 − 𝑥2 = −2𝑥 ;

𝑑𝑘

−2𝑥
= 𝑑𝑥,

∫︁
𝑥√

𝑟2 − 𝑥2
𝑑𝑥 =

∫︁
𝑥√
𝑘

𝑑𝑘

−2𝑥
= −1

2

∫︁
1√
𝑘
𝑑𝑘 = −1

2

∫︁
𝑘−1/2 𝑑𝑘 = −1

2

𝑘1/2

1/2
= −

√
𝑘.

Backsubstitution yields ∫︁
𝑥√

𝑟2 − 𝑥2
𝑑𝑥 = −

√︀
𝑟2 − 𝑥2.

Inserting this into (5) gives the result.

LEMMA A.4.∫︁
arcsin

(︃√︂
1 − 𝑦2

𝑟2

)︃
𝑑𝑦 = 𝑦 arcsin

(︃√︂
1 − 𝑦2

𝑟2

)︃
−
√︀
𝑟2 − 𝑥2 + 𝐶

PROOF. Starting with integration by parts∫︁
𝑢′𝑣 = 𝑢𝑣 −

∫︁
𝑢𝑣′

with

𝑢′ = 1 ; 𝑢 = 𝑥 and 𝑣 = arcsin

(︃√︂
1 − 𝑦2

𝑟2

)︃
; 𝑣′ =

𝑑

𝑑𝑦
arcsin

(︃√︂
1 − 𝑦2

𝑟2

)︃
yields an easier integral. We must first determine 𝑣′. Using the chain rule we find

𝑣′ =
1√︂

1 −
√︁

1 − 𝑦2

𝑟2

2
·

(︃√︂
1 − 𝑦2

𝑟2

)︃′

=
1√︁

1 − 1 + 𝑦2

𝑟2

· 1

2

(︂
1 − 𝑦2

𝑟2

)︂− 1
2

·
(︂
−2

𝑟2
𝑦

)︂

=
1

𝑦/𝑟
· −1√︁

1 − 𝑦2

𝑟2

𝑦

𝑟2

=
−1√︀
𝑟2 − 𝑦2

.

Hence we must now solve the integral on the right-hand side of∫︁
arcsin

(︃√︂
1 − 𝑦2

𝑟2

)︃
𝑑𝑦 = 𝑦 arcsin

(︃√︂
1 − 𝑦2

𝑟2

)︃
−
∫︁

𝑦
−1√︀
𝑟2 − 𝑦2

𝑑𝑦. (6)

Substituting 𝑘 = 𝑟2 − 𝑥2 thus
𝑑

𝑑𝑥
𝑘 =

𝑑

𝑑𝑥
𝑟2 − 𝑥2 = −2𝑥 ;

𝑑𝑘

−2𝑥
= 𝑑𝑥,∫︁

−𝑦√︀
𝑟2 − 𝑦2

𝑑𝑦 =

∫︁
−𝑦√
𝑘

1

−2𝑦
𝑑𝑘 =

1

2

∫︁
𝑘−1/2 𝑑𝑘 =

1

2
2𝑘1/2 =

√
𝑘.

Maximum Likelihood Analysis of the Ford-Fulkerson Method on Special Graphs A:25

Backsubstitution yields ∫︁
−𝑦√︀
𝑟2 − 𝑦2

𝑑𝑦 =
√︀
𝑟2 − 𝑥2.

Inserting this in (6) gives the result.

LEMMA A.5.∫︁ √︀
𝑟2 − 𝑥2 − 𝑏 𝑑𝑥 =

𝑟2

2
arcsin

(︁𝑥
𝑟

)︁
+

𝑥

2

√︀
𝑟2 − 𝑥2 − 𝑏𝑥 + 𝐶

PROOF. By linearity we get∫︁ √︀
𝑟2 − 𝑥2 − 𝑏 𝑑𝑥 =

∫︁ √︀
𝑟2 − 𝑥2 𝑑𝑥− 𝑏

∫︁
1 𝑑𝑥 = 𝑟

∫︁ √︀
1 − 𝑥2/𝑟2 𝑑𝑥− 𝑏𝑥. (7)

And we can continue with the standard trigonometric substitution 𝑥/𝑟 = sin(𝑦), thus
𝑦 = arcsin(𝑥/𝑟) and we continue with:

𝑑

𝑑𝑥

𝑥

𝑟
=

𝑑

𝑑𝑥
sin(𝑦) ;

1

𝑟
=

𝑑

𝑑𝑥
𝑦 cos(𝑦) ; 𝑑𝑥 = 𝑑𝑦𝑟 cos(𝑦),

𝑟

∫︁ √︁
1 − sin2(𝑦)𝑟 cos(𝑦) 𝑑𝑦 = 𝑟2

∫︁ √︀
cos2(𝑦) cos(𝑦) 𝑑𝑦 = 𝑟2

∫︁
cos2(𝑦) 𝑑𝑦.

Using the cosine double angle formula

cos(2𝑥) = 2 cos2(𝑥) − 1 ;
1 + cos(2𝑥)

2
= cos2(𝑥),

we remove the squared cosine

𝑟2
∫︁

1 + cos(2𝑦)

2
𝑑𝑦 =

𝑟2

2

∫︁
1+cos(2𝑦) 𝑑𝑦 =

𝑟2

2
𝑦+

𝑟2

2

∫︁
cos(2𝑦) 𝑑𝑦 =

𝑟2

2
𝑦+

𝑟2

4
sin(2𝑦), (8)

Using the sine double angle formula sin(2𝑦) = 2 sin(𝑦) cos(𝑦), and Pythagoras’ Theorem
to replace the cosine (︁𝑥

𝑟

)︁2
= sin2(𝑦) = 1 − cos2(𝑦),

𝑟2 − 𝑥2

𝑟2
= cos2(𝑦),

√
𝑟2 − 𝑥2

𝑟
= cos(𝑦)

we can rewrite the right-hand side of (8)

𝑟2

2
𝑦 +

𝑟2

4
sin(2𝑦) =

𝑟2

2
𝑦 +

𝑟2

4
2 sin(𝑦) cos(𝑦)

=
𝑟2

2
𝑦 +

𝑟2

2
sin(𝑦)

√
𝑟2 − 𝑥2

𝑟
.

Finally reverting the substitution with 𝑦 = arcsin(𝑥/𝑟)

=
𝑟2

2
arcsin(𝑥/𝑟) +

𝑟2

2
sin(arcsin(𝑥/𝑟))

√
𝑟2 − 𝑥2

𝑟

=
𝑟2

2
arcsin(𝑥/𝑟) +

𝑟2

2

𝑥

𝑟

√
𝑟2 − 𝑥2

𝑟

A:26 U. Laube and M. Nebel

=
𝑟2

2
arcsin(𝑥/𝑟) +

𝑥

2

√︀
𝑟2 − 𝑥2.

Inserting this in (8) and its result in (7) completes the proof.

A.3. Average edge capacities — Proof of Lemma 7.1
The average capacity of an edge 𝑒 ∈ 𝐸(𝐺𝑘) is

E
[︀
capgauss(𝑒)

]︀
=

1

Φ(251/50)

∞∑︁
𝑎=0

Φ

(︂
250 − 𝑎

50

)︂
=

501

2
+ 𝜖

with 𝜖 ≪ 1 and Φ(𝑥) denoting the cdf of the standard normal distribution.

PROOF. The capacity of an edge is chosen in the interval [0..∞] according to a
truncated normal distribution. 250 − ⌊50 ·𝑋⌋ where 𝑋 ∼ 𝑁(0, 1). Truncation is due to
the fact, that negative capacities are pointless. Whenever 250 − ⌊50 ·𝑋⌋ < 0 is true we
discard the result and draw again. Due to

250 < ⌊50 · 251

50
⌋ = ⌊251⌋ = 251

we accept only draws within the half-open interval 𝑋 ∈ [−∞, 251/50), consequently
the normal distribution is truncated to this interval. The pdf of the truncated normal
distribution is

𝑓(𝑥) =
𝑔(𝑥)

Φ(251/50)
𝑔(𝑥) =

{︂
0 𝑥 ≥ 251

50

𝜑(𝑥) 𝑥 < 251
50

With 𝜑(𝑥) being the pdf and Φ(𝑥) denoting the cdf of the standard normal distribution
𝑁(0, 1)

𝜑(𝑥) =
1√
2𝜋

𝑒−
1
2𝑥

2

Φ(𝑧) =

∫︁ 𝑧

−∞
𝜑(𝑡)𝑑𝑡

𝑑

𝑑𝑧
Φ(𝑧) = 𝜑(𝑧).

The pdf and cdf of a random variable 𝑋 normal distributed with mean 𝜇 and variance
𝜎2, that is 𝑋 ∼ 𝑁(𝜇, 𝜎2), can be written as

𝑓𝑋(𝑥) =
1

𝜎
𝜑

(︂
𝑥− 𝜇

𝜎

)︂
𝐹𝑋(𝑥) = Φ

(︂
𝑥− 𝜇

𝜎

)︂
in terms of the standard normal distribution. This is due to the standard normalization
𝑍 = 𝑋−𝜇

𝜎 , that turns an RV 𝑋 with mean 𝜇 and variance 𝜎2 into a RV 𝑍 with mean 0
and variance 1. Conversely 𝑋 = 𝜇± 𝜎𝑍 can be used to transform a standard normal
random variable into one with mean 𝜇 and variance 𝜎2.

Integrating∫︁ ∞

−∞
𝑓(𝑥)𝑑𝑥 =

1

Φ(251/50)

∫︁ ∞

−∞
𝑔(𝑥)𝑑𝑥 =

1

Φ(251/50)

∫︁ 251
50

−∞
𝜑(𝑥)𝑑𝑥 =

Φ(251/50)

Φ(251/50)
= 1

confirms that we have a probability distribution again.
Now for the expectation

E
[︀
250 − ⌊50 ·𝑋⌋

]︀
= 250 −

∫︁ ∞

−∞
⌊50 · 𝑥⌋𝑓(𝑥)𝑑𝑥

we deal with the floor by treating it as what it is a piecewise constant function. Creating
a step function, allows to collect all floating-point values that are mapped by the floor

Maximum Likelihood Analysis of the Ford-Fulkerson Method on Special Graphs A:27

function to the same integer.

250 − ⌊50 · 𝑥⌋ = 𝑎 ∈ N0

250 − 𝑎 = ⌊50 · 𝑥⌋ ⇔ 𝑥 ∈
[︂

250 − 𝑎

50
,

250 − 𝑎 + 1

50

)︂
Thus we integrate

ℎ(𝑎) =

∫︁ 250−𝑎+1
50

250−𝑎
50

𝑓(𝑥)𝑑𝑥 =
1

Φ(251/50)

∫︁ 250−𝑎+1
50

250−𝑎
50

𝑔(𝑥)𝑑𝑥 =
Φ
(︀
250−𝑎+1

50

)︀
− Φ

(︀
250−𝑎

50

)︀
Φ(251/50)

Checking that we have a distribution
∞∑︁
𝑎=0

ℎ(𝑎) =

∞∑︁
𝑎=0

Φ
(︀
250−𝑎+1

50

)︀
− Φ

(︀
250−𝑎

50

)︀
Φ(251/50)

=

∑︀∞
𝑎=0 Φ

(︀
250−𝑎+1

50

)︀
− Φ

(︀
250−𝑎

50

)︀
Φ(251/50)

clearly telescopes to
∞∑︁
𝑎=0

ℎ(𝑎) =
Φ
(︀
250−0+1

50

)︀
Φ(251/50)

= 1

Thus the expectation now simply is
∞∑︁
𝑎=0

𝑎 · ℎ(𝑎) =

∞∑︁
𝑎=0

𝑎 ·
Φ
(︀
250−𝑎+1

50

)︀
− Φ

(︀
250−𝑎

50

)︀
Φ(251/50)

=
1

Φ(251/50)

(︃ ∞∑︁
𝑎=0

𝑎 · Φ

(︂
251 − 𝑎

50

)︂
−

∞∑︁
𝑎=0

𝑎 · Φ

(︂
250 − 𝑎

50

)︂)︃

=
1

Φ(251/50)

(︃ ∞∑︁
𝑎=1

𝑎 · Φ

(︂
251 − 𝑎

50

)︂
−

∞∑︁
𝑎=1

𝑎 · Φ

(︂
250 − 𝑎

50

)︂)︃

=
1

Φ(251/50)

(︃ ∞∑︁
𝑎=0

(𝑎 + 1) · Φ

(︂
251 − (𝑎 + 1)

50

)︂
−

∞∑︁
𝑎=1

𝑎 · Φ

(︂
250 − 𝑎

50

)︂)︃

=
1

Φ(251/50)

(︃
Φ

(︂
250

50

)︂
+

∞∑︁
𝑎=1

(𝑎 + 1) · Φ

(︂
250 − 𝑎

50

)︂
− 𝑎 · Φ

(︂
250 − 𝑎

50

)︂)︃

=
1

Φ(251/50)

(︃
Φ

(︂
250

50

)︂
+

∞∑︁
𝑎=1

Φ

(︂
250 − 𝑎

50

)︂)︃

=

∑︀∞
𝑎=0 Φ

(︀
250−𝑎

50

)︀
Φ(251/50)

≈ 250.500067...

A.4. Average maxflow in a square grid graph — Proof of Lemma 7.3
The average maxflows in a square grid graph 𝐺𝑘 are bounded by:

E
[︀
mf(·)

]︀
unit unif gauss

llur 2 · 1 2 · 3350
101 2 · 222.3

lmum 3 · 1 3 · 3350
101 3 · 222.3

A:28 U. Laube and M. Nebel

PROOF. There is no more flow possible than the minimum of the total capacities of
source and sink. Due to the random edge weights there may not be enough edges in
between with a high enough total capacity. As these bottlenecks may only lower the
maxflow we ignore them and proceed with:

E[maxflow(s, t)] ≤ E
[︀
min

{︀
cap(𝑠), cap(𝑡)

}︀]︀
= 𝑐 · E

[︀
min

{︀
cap(𝑒), cap(𝑒)

}︀]︀
with 𝑐 = deg(𝑠) = deg(𝑡). This expectation is the first moment of the first order statistics
of two iid discrete random variables, it can be expressed via the “tail” of the cdf of the
discrete random variables, see [David and Nagaraja 2003]:

E
[︀
𝑋(1)

]︀
= E

[︀
min{𝑋1, 𝑋2}

]︀
=

∞∑︁
𝑥=0

(︀
1 − 𝐹𝑋(𝑥)

)︀2
.

In case of the discrete uniform distribution 𝒰 on [0..100] we find:

E
[︀
𝑈(1)

]︀
=

100∑︁
𝑢=0

(︂
1 − 1 + 𝑢

101

)︂2

=

100∑︁
𝑢=0

(︂
100 − 𝑢

101

)︂2

=

100∑︁
𝑢=1

(︁ 𝑢

101

)︁2
=

1

1012

100∑︁
𝑢=1

𝑢2

=
1

1012
(200 + 1)(100 + 1)100

6
=

3350

101
= 33.1683.

In case of the gauss distribution 𝑋 ∼ 𝒩 (0, 1) we redraw whenever 250 − ⌊50 ·𝑋⌋ < 0 is
true. Due to

250 <

⌊︂
50 · 251

50

⌋︂
= 251

we accept only draws within the half-open interval 𝑋 ∈ [−∞, 251/50). The truncated
pdf 𝑓𝑋(𝑥) of the standard normal distribution is then:

𝑓𝑋(𝑥) =
𝑔(𝑥)

Φ(251/50)
𝑔(𝑥) =

{︂
0 𝑥 ≥ 251/50

𝜑(𝑥) 𝑥 < 251/50
,

therefore its cdf is

𝐹𝑋(𝑥) =

{︂
1 𝑥 > 251/50

Φ(𝑥)/Φ(215/50) 𝑥 ≤ 251/50
.

Transforming with 𝑍 = 250 − 50𝑋 yields:

𝐹𝑍(𝑧) =

{︂
0 𝑧 < −1

1 − Φ
(︀
(250 − 𝑧)/50

)︀
/Φ(251/50) 𝑧 ≥ −1

.

Thus

E
[︀
𝑍(1)

]︀
=

∞∑︁
𝑧=0

(︀
1 − 𝐹𝑍(𝑧)

)︀2
=

∞∑︁
𝑧=0

(︃
Φ
(︀
250−𝑧

50

)︀
Φ(251/50)

)︃2

≈ 222.3

where 𝜑(𝑥) and Φ(𝑥) are the pdf and cdf of the standard normal distribution respec-
tively.

A.5. DFS, BFS and PFS implementations of the graph search
cEdge[] st; // spanning tree parent pointer

void augment(int s, int t) {
int d = st[t].capRto(t); // init with remaining cap into the sink

Maximum Likelihood Analysis of the Ford-Fulkerson Method on Special Graphs A:29

for (int v = ST(t); v != s; v = ST(v)) { // search sink to source
if (st[v].capRto(v) < d) { // for the bottleneck

d = st[v].capRto(v);
} }
st[t].addflowRto(t, d);
for (int v = ST(t); v != s; v = ST(v)) { // push the flow along

st[v].addflowRto(v, d); // the augmenting path
} }

The annotation produceCost("EdgeFlowChanged", 1) inside the method addflowRto()
is used to keep track of the updates made to the graph data structure. The next code
fragments show the similarity of the dfs() and bfs() routines, just the stack is replaced
by a queue. The part where the iterator visits the incident edges of a vertex is shown in
both versions. First we present the code for depth-first-search:

int[] wt; // flag for already visited nodes
cEdge[] st; // spanning tree parent pointer

boolean dfs() {
intStack iS = new intStack(G.V());
for (int v = 0; v < G.V(); v++) { // init

wt[v] = 0;
st[v] = null;

}
produceCost("dfsPush", 1);
iS.push(s);
wt[s] = 1; // mark s as visited
while (!iS.isEmpty()) {

produceCost("dfsPop", 1);
int v = iS.pop(); // current node
if (v == t) { return true; } // stop on sink
cGraph.AdjList A = G.getAdjList(v);
for (cEdge e = A.beg(); !A.end(); e = A.nxt()) { // dfs
for (cEdge e = A.begrnd(); !A.end(); e = A.rndnxt()) { // dfsrnd

produceCost("dfsTouch", 1);
int w = e.other(v); // the other end of the edge
if (e.capRto(w) > 0) { // any cap left?

if (wt[w] == 0) { // check if already visited
st[w] = e; // move the edge from fringe to the DFS-spanning tree
wt[w] = 1; // mark w as visited
produceCost("dfsPush", 1);
iS.push(w);

} } } }
return false;

}

Next the code for breadth-first-search is given:

int[] wt; // flag for already visited nodes
cEdge[] st; // spanning tree parent pointer

boolean bfs() {
intQueue iQ = new intQueue(G.V());
for (int v = 0; v < G.V(); v++) { // init

A:30 U. Laube and M. Nebel

wt[v] = 0;
st[v] = null;

}
produceCost("bfsPut", 1);
iQ.put(s);
wt[s] = 1; // mark s as visited
while (!iQ.empty()) {

produceCost("bfsGet", 1);
int v = iQ.get(); // current node
if (v == t) { return true; } // stop on sink
cGraph.AdjList A = G.getAdjList(v);
for (cEdge e = A.beg(); !A.end(); e = A.nxt()) { // bfs
for (cEdge e = A.begrnd(); !A.end(); e = A.rndnxt()) { // bfsrnd

produceCost("bfsTouch", 1);
int w = e.other(v); // the other end of the edge
if (e.capRto(w) > 0) { // any cap left?

if (wt[w] == 0) { // check if already visited
st[w] = e; // move the edge from fringe to the BFS-spanning tree
wt[w] = 1; // mark w as visited
produceCost("bfsPut", 1);
iQ.put(w);

} } } }
return false;

}

The methods push()/put() and pop()/get() are annotated to be able to track them.
The maximum capacity augmenting path heuristic is implemented via a priority

queue that uses the leftover capacity as the priority.

int[] wt; // remaining negative cap along the PFS spanning tree edge
cEdge[] st; // spanning tree parent pointer

boolean pfs() {
intPQi pQ = new intPQi(G.V(), wt); // capacities are the PQs priority
for (int v = 0; v < G.V(); v++) { // init

wt[v] = 0;
st[v] = null;
pQ.insert(v); // like Dijkstra insert all vertecies

}
wt[s] = -5000; // set to largest minimum (unlimited inflow at source)

// -> move source to front of PQ
pQ.lower(s); // priority has changed fix PQ-heap
while (!pQ.empty()) {

produceCost("pfsGetmin", 1);
int v = pQ.getmin();
wt[v] = -5000; // mark visited and assume unlimited inflow we are just

// searching for a path not yet sending flow along it
if (v == t) { break; } // stop on sink
if (v != s && st[v] == null) { break; } // node not part of the PFS
cGraph.AdjList A = G.getAdjList(v); // spanning tree
for (cEdge e = A.beg(); !A.end(); e = A.nxt()) { // check the neighbors

produceCost("pfsTouch", 1);
int w = e.other(v); // the other end of the edge

Maximum Likelihood Analysis of the Ford-Fulkerson Method on Special Graphs A:31

int cap = e.capRto(w); // leftover cap towards w
int P = cap < -wt[v] ? cap : -wt[v]; // inflow from v is capped by
if (cap > 0 && -P < wt[w]) { // the cap constraint

wt[w] = -P;
pQ.lower(w);
produceCost("pfsEdgesConsidered", 1);
st[w] = e; // move the edge from fringe to the PFS-spanning tree

} } }
return st[t] != null; // check if the sink is in the PFS-spanning tree

}

A.6. Maximum Likelihood Analysis
This section contains a brief introduction to the maximum likelihood analysis method
introduced in [Laube and Nebel 2010]. There are three main ideas to this analysis
method:

First, we know from probability theory that the partial derivative of a probability
generating function (pgf) evaluated at 1 gives the expectation of a discrete random
variable. To find the average of a performance parameter of an algorithm, we regard it
as a random variable that depends on the distribution of the inputs. Our goal is then to
derive the pgf from the algorithm to be analyzed and a sufficient sample of its inputs
using methods from statistical inference.

Second, in analytic combinatorics [Flajolet and Sedgewick 2009] an idea from [Chom-
sky and Schützenberger 1963] is regularly used to solve counting problems by encoding
the structure of combinatorial objects into words of formal languages and translating
a grammar of the language into ordinary generating functions. An example how the
structure of tries can be encoded with Motzkin words and used in an average-case anal-
ysis can be found in [Laube and Nebel 2010]. Modifying this approach to incorporate
stochastic context free languages, to allow non-uniform settings, enables us to translate
the problem of finding the pgf into constructing an appropriate stochastic context free
grammar, that is a context free grammar together with probabilities associated with its
rules.

And third, for the purpose of analyzing algorithms a regular language, that can be
described by a right-linear grammar derived automatically from the source code of the
algorithm, suffices. The grammar describes the traces of the algorithm’s execution and is
augmented with probabilities for each rule that are determined from a “typical” sample
set of inputs. Here R.A. Fisher’s maximum likelihood principle [Aldrich 1997] is used to
tune the probabilities of this stochastic grammar to capture the non-uniform probability
distribution induced by the set of inputs. We call this the maximum likelihood training
of the grammar.

In the following subsections we explain how the grammar is obtained and trained
and how it is transformed into a probability generating function.

A.6.1. A General Regular Grammar for Analyzing Algorithms. For the purpose of analyzing
algorithms a regular language, that can be described by a right-linear grammar derived
automatically from the source code of the algorithm, is used to describe the traces
of the algorithm’s execution (a trace is a sequence of line numbers of the executed
instructions).

Definition A.6 (trace, trace language). Given an algorithm 𝒜 specified in an low-
level language (like Knuth’s MMIX assembly code or Java bytecode), we let 𝐿𝒜 be
the set of line numbers appearing in the specification of algorithm 𝒜. The set of line
numbers 𝐿𝒜 will serve as alphabet. The words from 𝐿⋆

𝒜 (sequences of line numbers)
that correspond to the flow of control, that can be observed when algorithm 𝒜 runs on

A:32 U. Laube and M. Nebel

the input 𝑣, is called the trace of 𝒜 on input 𝑣, denoted by 𝑇𝒜(𝑣). The set of all words
𝑇𝒜(𝑣) is the trace language of 𝒜 (the set of all control flows), denoted by ℒ𝒜.

The reasons for choosing a low-level representation (here Java bytecode) of the
algorithm are: First, the low-level representation serves as a kind of normal form
with respect to the control flow, as we only have to distinguish between unconditional
and conditional jumps and all other instructions. Second, for parameters that do not
depend on the particular value of the input or where it is stored in memory the trace
language provides all information for the analysis of algorithm 𝒜. While we can analyze
parameters like the running time in clock cycles we usually use coarser units, like the
number of comparison, exchanges, visited nodes, arithmetic operations, etc., that is, the
typical elementary operations considered in the analysis of algorithms.

We only have to assign the various “costs” to the operations in the specification of
algorithm 𝒜. Formally this is expressed through a parameter.

Definition A.7 (parameter). A parameter is given by a homomorphism 𝜆 : 𝐿⋆ → N0

with 𝜆(𝜖) = 0 and 𝜆(𝑢 ∘𝑤) = 𝜆(𝑢) +𝜆(𝑤) where ∘ denotes concatenation and 𝜖 the empty
word.

If we let 𝑝(𝑣) be the probability for input 𝑣 and ℐ𝑛 the set of all inputs of size 𝑛, then
the expected cost of 𝜆 for all inputs of size 𝑛 is simply

E[𝜆] :=
∑︁
𝑣∈ℐ𝑛

𝑝(𝑣) · 𝜆(𝑇𝒜(𝑣)). (9)

Unlike the situation in analytic combinatorics, were a new formal language – a new
encoding – has to be found for every new class of combinatorial objects to be analyzed,
we define a general grammar that describes the traces of the algorithm’s execution.
Each rule is augmented with probabilities, this stochastic grammar is then a model for
the algorithm’s behavior. The rule’s probabilities will be determined from a “typical”
sample set of inputs.

Definition A.8 (trace grammar). A trace grammar 𝐺𝒜 for algorithm 𝒜 with line
numbers 𝐿𝒜 = {1, . . . ,𝑚} is a stochastic context free grammar (scfg) 𝐺𝒜 =
(𝑁,𝑇,𝑅, 𝑃, 𝑆), where 𝑁 = {𝐿1 = 𝑆,𝐿2, . . . , 𝐿𝑚+1} is a set of variables or non-terminal
symbols. 𝑇 = {ℓ1, . . . , ℓ𝑚} is a set of terminal symbols disjoint from 𝑁 . The set of rules
𝑅 = {𝑟1, . . . , 𝑟𝑚+1} is a subset of 𝑁 × (𝑇𝑁 ∪ {𝜖}). Its elements 𝑟𝑗 = (𝐿𝑖, 𝜔𝑗) are also
called productions. Additionally we denote by 𝑅𝑖 = {𝑟𝑗 | 𝑟𝑗 = (𝐿𝑖, 𝜔𝑗) ∈ 𝑅} the set of
rules with the same left-hand side 𝐿𝑖. The mapping 𝑃 from 𝑅 into (0, 1] assigns each
rule 𝑟𝑗 its probability 𝑝𝑗 . We also write 𝐿𝑖 → 𝑝𝑗 : 𝜔𝑗 for a rule 𝑟𝑗 = (𝐿𝑖, 𝜔𝑗) ∈ 𝑅 with
𝑃 (𝑟𝑗) = 𝑝𝑗 . We require that ∑︁

{𝑗|𝑟𝑗∈𝑅𝑖}

𝑝𝑗 = 1, 𝑖 = 1, 2, . . . ,𝑚 + 1

holds. This ensures that we have a probability distribution on the rules with the same
left-hand side. The symbol 𝑆 = 𝐿1 ∈ 𝑁 is a distinguished variable called the axiom or
start symbol. All sets in this definition are finite.

Let ℒ(𝐺𝒜) be the language generated by the trace grammar 𝐺𝒜, that is the set of
all terminal strings or words which can be generated by successively substituting all
non-terminals according to the productions starting with the axiom 𝑆. Such a successive
substitution is called a derivation and is written as 𝛼 ⇒⋆ 𝛽, if there is a possibly empty
sequence of rules 𝑟𝑖1 , . . . , 𝑟𝑖𝑘 that leads from 𝛼 to 𝛽. The probabilities of the rules now
induce probabilities on the derivations by multiplying the involved rule’s probabilities

Maximum Likelihood Analysis of the Ford-Fulkerson Method on Special Graphs A:33

𝑝 = 𝑝𝑖1 · . . . · 𝑝𝑖𝑘 . This can be extended to the whole set of terminal strings, that is the
whole language, by summing up all probabilities of the different left-most derivations
of each terminal string.

For the trace grammar 𝐺𝒜 to actually generate the trace language ℒ𝒜 ⊆ ℒ(𝐺𝒜) we
have to describe how the low-level specification of the algorithm 𝒜 is translated into
the set of grammar rules. Each line of the low-level code is translated according to the
following three simple rules:

(1) An unconditional jump from line 𝑖 to line 𝑗 is expressed by the rule 𝐿𝑖 → 1 : ℓ𝑖𝐿𝑗 .
(2) A conditional jump in line 𝑖 that may jump to line 𝑗 is expressed by the rule

𝐿𝑖 → 𝑝𝑖 : ℓ𝑖𝐿𝑗 | 1 − 𝑝𝑖 : ℓ𝑖𝐿𝑖+1.
(3) All other instructions yield the rule 𝐿𝑖 → 1 : ℓ𝑖𝐿𝑖+1.

A last production 𝐿𝑚+1 → 1 : 𝜖 is added to allow the grammar to generate terminal
strings, that are obviously sequences of line numbers of the executed instructions. The
parameter homomorphism will reduce the amount of information further and focus
on the chosen elementary operations, but we are free to use all the details from these
terminal strings to count for example the number of memory access’ if required. By
design we ignore the contents of registers or memory locations. Consequently we have
the following lemma.

LEMMA A.9. A trace grammar 𝐺𝒜 build according to the three rules presented above
generates the trace language of a given algorithm 𝒜, that is ℒ𝒜 ⊆ ℒ(𝐺𝒜). Furthermore
the grammar can be efficiently constructed in a single pass over the specification of the
algorithm.

Relaxing our definition of the rule set of our grammar to be a subset of 𝑁 × (𝑇+𝑁 ∪ {𝜖})
allows us to combine many linear rules like 𝐿𝑖 → ℓ𝑖𝐿𝑗 and thus reduces the number of
rules to the number of conditional jumps in the low-level specification of the algorithm.

A.6.2. Obtaining a Generating Function from the Grammar. Having constructed the grammar
as discussed in the previous section we can apply the idea of [Chomsky and Schützen-
berger 1963] and derive a probability generating function (pgf), whose partial derivative
we want to evaluate at 1 to get the average performance of a parameter of an algorithm
as in Eq. (9). We obtain the pgf by translating the grammar rules into linear equations
using the following two transformations:

𝐿𝑖 → 1 : ℓ𝑖𝐿𝑖+1 ; 𝐿𝑖(𝑧, 𝑦) = 𝑦𝜆(𝑖)𝑧𝛾(𝑖)𝐿𝑖+1(𝑧, 𝑦),

𝐿𝑖 → 𝑝𝑖 : ℓ𝑖𝐿𝑗 | 𝑞𝑖 : ℓ𝑖𝐿𝑖+1 ;

𝐿𝑖(𝑧, 𝑦) = 𝑝𝑖𝑦
𝜆(𝑖)+2𝑧𝛾(𝑖)𝐿𝑗(𝑧, 𝑦) + 𝑞𝑖𝑦

𝜆(𝑖)𝑧𝛾(𝑖)𝐿𝑖+1(𝑧, 𝑦), (10)

where 𝑞𝑖 = 1 − 𝑝𝑖 and 𝛾 is a second homomorphism, that assigns each trace 𝑇𝒜(𝑣) the
size of the input 𝑣, that is for 𝑣 ∈ ℐ𝑛 we have 𝛾(𝑇𝒜(𝑣)) = 𝑛. The homomorphism 𝛾 is
chosen in such a way, that it assigns a line 𝑖 a contribution of 1 to the total size of the
input, if one element of the input is accessed by that line for the last time, because
algorithms do not work on the input as a whole. For example if the size of the input is
measured by the number of nodes in a graph, the part of the algorithm that works on a
node for the last time gets a contribution of 1. Thus whenever this part of the algorithm
finishes working on a node it contributes to the total size, which amounts to the correct
size when all nodes are processed.

A:34 U. Laube and M. Nebel

The set of linear equations obtained from the set of grammar rules can now be solved
for 𝐿1(𝑧, 𝑦), leading to the pgf

𝐿1(𝑧, 𝑦) =
∑︁

𝑤∈ℒ(𝐺𝒜)

𝑝𝑤𝑦
𝜆(𝑤)𝑧𝛾(𝑤) =

∑︁
𝑛≥0

∑︁
𝑘≥0

∑︁
𝑣∈ℐ𝑛

𝜆(𝑇𝒜(𝑣))=𝑘

𝑝(𝑣)𝑦𝑘𝑧𝑛. (11)

Next we can find symbolic, due to the yet unspecified probabilities, expressions for the
expectation of the parameter 𝜆 by conditioning the partial derivative of the pgf to a
fixed size of the inputs:

E[𝜆] =
[𝑧𝑛] 𝜕

𝜕𝑦𝐿1(𝑧, 𝑦) |𝑦=1

[𝑧𝑛]𝐿1(𝑧, 1)
=

∑︀
𝑤∈ℒ𝑛(𝐺𝒜) 𝑝𝑤𝜆(𝑤)∑︀

𝑤∈ℒ𝑛(𝐺𝒜) 𝑝𝑤
=

∑︀
𝑣∈ℐ𝑛

𝑝(𝑣) · 𝜆(𝑇𝒜(𝑣))∑︀
𝑣∈ℐ𝑛

𝑝(𝑣)
, (12)

where ℒ𝑛(𝐺𝒜) is a subset of ℒ(𝐺𝒜) containing all traces 𝑇𝒜(𝑣) with 𝛾(𝑇𝒜(𝑣)) = 𝑛.
Conditioning is necessary, as the probabilities of the grammar rules induce a probability
distribution on the entire trace language and we are only looking at the subset of all
traces 𝑇𝒜(𝑣) with 𝛾(𝑇𝒜(𝑣)) = 𝑛.

A.6.3. Maximum Likelihood Training of the Grammar Probabilities. The still unspecified proba-
bilities 𝑝𝑖 of the rules in the trace grammar correspond to the conditional jumps in the
low-level description of the algorithm and are determined by observing the algorithm
working on sample inputs. This allows us to make statements about the performance
parameters behavior, assuming a probability model derived from a specific family of
inputs.

We call this step the maximum likelihood training because the probabilities of the
trace grammar rules can be interpreted as the free parameters of that probability model.
Then the maximum likelihood principle instructs us to adjust the free parameters of the
probability model in such a way that any other choice would make the same observation
less likely. From the work of [Chi and Geman 1998; Nederhof and Satta 2006] we know,
that assigning relative frequencies, observed on a sample, yields maximum likelihood
estimates of the unknown probabilities and moreover induces a probability distribution
on the entire trace language, which is not the case for an arbitrary choice. Thus a
trained grammar allows us to generate words with are distributed very much the same
as the traces observed on the sample inputs. Consequently we obtain a model for the
behavior of the algorithm for a specific family of inputs. In [Laube and Nebel 2010] we
have been able to prove that D. Knuth’s classical approach towards an average-case
analysis, see [Knuth 1997], and a maximum likelihood analysis yield precisely the same
expectations when they are provided with the same probability model.

Once the model is trained we treat it as given. Like in other sciences when the
scientific method is applied, we accept the inherent simplifications made while building
the model and use it nevertheless to make predictions based on it. This is a compromise
we are willing to make as a complete and true representation of the average-case
behavior of a complex algorithm maybe impossible.

Obviously such a training requires an implementation of the algorithm 𝒜 to record
the relative frequencies of the jumps for every input 𝑣 in the sample set. The details
of how these counts are obtained and processed were presented in [Laube and Nebel
2010]. The result of such a maximum likelihood training is a set of probability functions
in dependence of the input size 𝑛.

ACKNOWLEDGMENTS

This work was inspired by the slides of two talks of R. Sedgewick on “The Role of the Scientific Method in
Programing” [Sedgewick 2010b] and “Putting the Science back into Computer Science” [Sedgewick 2010a].

Maximum Likelihood Analysis of the Ford-Fulkerson Method on Special Graphs A:35

The authors would like to thank Sebastian Wild, Raphael Reitzig, Michael Holzhauser, Vasil Tenev and
Florian Furbach for their ongoing effort in the development of MaLiJAn, the tool to do the maximum likelihood
average case analysis of Java bytecode programs semi-automatically.

References
ALDRICH, J. 1997. R. a. fisher and the making of maximum likelihood 1912–1922. Statistical Science 12, 3,

162–176.
CHANDRAN, B. AND HOCHBAUM, D. 2009. A computational study of the pseudoflow and push-relabel

algorithms for the maximum flow problem. Op. Res. 57, 358–376.
CHI, T. AND GEMAN, S. 1998. Estimation of probabilistic context-free grammars. Computational Linguis-

tics 24, 2, 299–308.
CHOMSKY, N. AND SCHÜTZENBERGER, M.-P. 1963. The algebraic theory of context-free languages. In

Computer Programming and Formal Languages, P. Braffort and D. Hirschberg, Eds. North Holland,
118–161.

DAVID, H. A. AND NAGARAJA, H. N. 2003. Order Statistics Third Ed. Wiley.
DINIC, E. A. 1970. An algorithm for the solution of the max-flow problem with the polynomial estimation.

Soviet Math. Dokl 11, 1277–1280. Dokl. Akad. Nauk SSSR 194, 1970, no.4 (in Russian).
DURSTENFELD, R. 1964. Algorithm 235: Random permutation. Communications of the ACM 7, 7, 420.
EDMONDS, J. AND KARP, R. M. 1972. Theoretical improvements in algorithmic efficiency for network flow

problems. Journal of the ACM 19, 2, 248–264.
ERDOS, P. AND RÉNYI, A. 1959. On random graphs i. Publ. Math. Debrecen 6, 290–297.
FLAJOLET, P. AND SEDGEWICK, R. 2009. Analytic Combinatorics. Camb. Univ. Press.
FORD, L. R. AND FULKERSON, D. R. 1962. Flows in Networks. Princeton University Press.
GILBERT, E. N. 1959. Random graphs. Annals of Mathematical Statistics 30, 1141–1144.
GOLDBERG, A. V. AND RAO, S. 1998. Beyond the flow decomposition barrier. J. Assoc. Comput. Mach. 45,

753–782.
GOLDFAB, D. AND GRIGORIADS, M. D. 1988. A computational comparison of the dinic and network simplex

methods for maximum flow. Annals of Oper. Res. 13, 83–123.
KNUTH, D. E. 1997. The Art of Computer Programming, Volume 1: Fundamental Algorithms Third Ed.

Addison Wesley.
KNUTH, D. E. 1998. The Art of Computer Programming, Volume 2: Seminumerical Algorithms Third Ed.

Addison Wesley.
LAUBE, U. AND NEBEL, M. E. 2010. Maximum likelihood analysis of algorithms and data structures.

Theoretical Computer Science 411, 1, 188–212.
MOTWANI, R. 1994. Average-case analysis of algorithms for matchings and related problems. Journal of the

ACM 41, 6, 1329–1356.
NEDERHOF, M.-J. AND SATTA, G. 2006. Estimation of consistent probabilistic context-free grammars. In

HLT-NAACL. New York, USA, 343–350.
ORLIN, J. B. 2013. Max flows in 𝑂(𝑛𝑚) time, or better. In STOC ’13: Proceedings of the 45th annual ACM

symposium on Symposium on theory of computing. ACM, New York, NY, USA, 765–774.
PENROSE, M. 2003. Random Geometric Graphs. Oxford University Press.
SEDGEWICK, R. 2003. Algorithms in Java, 3rd. Ed., Part 5 Graph Algorithms. Addison Wesley.
SEDGEWICK, R. 2010a. Putting the science back into computer science. www.cs.princeton.edu/rs~/talks/

ScienceCS10.pdf.
SEDGEWICK, R. 2010b. The role of the scientific method in programming. www.cs.princeton.edu/~rs/talks/

ScienceCS.pdf.
VIZING, V. G. 1963. The cartesian product of graphs. Vyčisl. Sistemy 9, 30–43.
WILD, S., NEBEL, M., REITZIG, R., AND LAUBE, U. Engineering java 7’s dual pivot quicksort using malijan.

In ALENEX 2013: Proceedings of the Meeting on Algorithm Engineering & Experiments. New Orleans,
USA, 55–70.

www.cs.princeton.edu/rs~/talks/ScienceCS10.pdf
www.cs.princeton.edu/rs~/talks/ScienceCS10.pdf
www.cs.princeton.edu/~rs/talks/ScienceCS.pdf
www.cs.princeton.edu/~rs/talks/ScienceCS.pdf

	Introduction
	Results
	Network Flow
	Ford-Fulkerson Method

	Grid Graphs
	Random Geometric Graphs
	sample inputs for experiments
	Distributions
	Verification
	Discussion
	Conclusion
	Grid graph properties – Proof of Lemma 4.5
	Random geometric graph properties – Proof of Theorem 5.2
	Average edge capacities — Proof of Lemma 7.1
	Average maxflow in a square grid graph — Proof of Lemma 7.3
	DFS, BFS and PFS implementations of the graph search
	Maximum Likelihood Analysis
	A General Regular Grammar for Analyzing Algorithms
	Obtaining a Generating Function from the Grammar
	Maximum Likelihood Training of the Grammar Probabilities

